Project Title: DVH Transfer to Glen Site
Project Title: Development of a plan assessment software toolbar radiotherapy treatment planning
Project Title: Advanced quality assurance methodologies in image-guided brachytherapy.
Project Title: Relaxometry-Based Quantitative Myelin Imaging.
Project Title: Novel Calorimeter Detector Systems for Accurate Clinical Dosimetry of Photon and Electron Radiation Therapy Systems
Project Title: Development and use of track structure codes for prediction of radiation response by proton and other light ions
Project Title: Nanoparticle-enhanced Radiotherapy for Cancer Treatment
Project Title: Accélération du calcul de dose analytique primaire + diffusé en curiethérapie à l’aide de processeurs graphiques (Transport de protons par technique Monte Carlo sur processeur graphique)
Project Title: Analyze d’imagerie multimodale TEP/IRM
Project Title: Surveillance de la dose au cours de procedures de radiologie interventionelle
Project Title: To be added.
Project Title: Reconstruction tomographique d’un patron d’émission lumineuse capté par imagerie plénoptique
Project Title: Study on Head & Neck tumor
Project Title:Development of Monte Carlo simulation code for INTRABEAM radiation Therapy and Dosimetry Applications
Project Title: Patient-reported outcomes in the Opal app
Project Title: To be Added
Project Title: Use of plastic scintillation detector to determine machine specific, plan class and clinical field ionization chamber correction factors for the Cyberknife radiosurgery
Project Title:
1) Prostate biomarker study
2) EX-VIVO Simulation of Sarcoma metastasis (3D)
Project Title: Étude sur I’utilisation de CT multiple energie en proton et carbone therapie pour une meilleure delimitation de la tumeur et une augmentation de la definition du pouvoir d’arret massique
Project Title: Design of custom scattering foils for modulated electron radiotherapy
Project Title: Système de suivi de dose cumulative chez les patients en radiologie .
Project Title: Utilisation de la technologie de scan et d\\\’impression 3D pour la création d\\\’applicatieurs personalisés pour les traitments de curiethérapie à haut débit.
Project Title: Development of Patient-Reported Outcomes Questionnaires for Opal.
Project Title: Intra-operative use of Raman spectroscopy during brain tumor resection for tissue classification and characterization
Project Title: Development of an electro-optic radiation detector for use in dosimetry
Project Title: To Be Added .
Project Title: Caractérisation et optimisation de détecteur multiGpoints à scintillation (mPSD) (MultiGpoint plastic scintillation detectors: optimization and applications)
Project Title: Développement d’un modèle de frontière stochastique pour le contrôle qualité en curiethérapie haut débit de dose
Project Title: Improving dose calculation on CBCT through deformable image registration (Améliorer le calcul e dose sur CBCT par utilisation du recalage déformable)
Project Title: Une plateforme de planification des traitements en médecine nucléaire pour la thérapie radio-isotopique
Project Title: Combination chemotherapy and radiation therapy using gold nanoparticle delivered doxorubicin.
Project Title: Opal – Integration o push notifications into the Oncology Portal and Application
Project Title: Nanoparticle-aided radiation therapy with scintillating high Z materials
Project Title: Use of Microsoft Kinect applications of patient surface data to radiotherapy.
Project Title: A mobile and Web App for Radiation Oncology Patients
Project Title: X-ray acoustic computed tomography for image-guided radiotherapy
Project Title: Assessment of the occurrence of radiation induced secondary tumors following modern radiation therapy modalities
Project Title: Essai clinique d’un guidage electro-magnétique pour la brachythérapie HDR de la prostate
Project Title: To be Added
Project Title: Realistic knowledge-based waiting times for radiotherapy patients – addressing the pain of waiting
Project Title: Q+ – Addressing the pain of waiting
Project Title: Machine Learning for Oncology Waiting Times
Project Title: Enhancement of 4D PET images in Prostate Cancer.
Project Title: Analyse de Signal d’un Détecteur à Fibre Scintillante
Project Title: Systems biology based radiation pneumonitis modeling and risk prediction
Project Title: Waiting time visualizations in Oncology
Project Title: Exploration of organic electronics as radiation detection devices
Project Title:
1) The application of gold nanoparticle (AuNP) in Brachytherapy
2) Commissioning of Model-based dose calculation algorithms
Project Title: Opal Caregiver App for Oncology Patients
Project Title:Microdosimetric difference between high and low energy neutrons related to cancer risk.
Project Title: The effect of tissue composition uncertainty on dose distributions in brachytherapy
Project Title: Transport de protons par technique Monte Carlo sur processeur graphique
Project Title: Development of Monte Carlo Simulation Code for INTRABEAM® Radiation Therapy and Dosimetry Applications.
Project Title: Preclinical Evaluation of Radiation-Induced Pneumonitis Treatments in Lung Cancer.
Project Title: Oline Image-Guided Adaptive Radiotherapy
Project Title: Reconstruction iterative en tomodensitométrie pour applications 4D en géométrie conique
Project Title: Reconstruction Itérative en Tomodensitométrie avec Correction des Projections par Simulation Monte Carlo.
Project Title: Monte Carlo and experimental measurements to validate dose calculation algorithms in brachytherapy .
Project Title: Opal Caregiver App for Oncology Patients
Project Title: An open-source package for automated image quality assurance in magnetic resonance imaging
Project Title: Optimization of the Multi-Echo Gradient Echo Pulse Sequence for the Acquisition of Radiation Therapy Planning Images
Project Title: Exploiting Radio-Tracer Specific Atlases For Segmentation and PET Reconstruction
Project Title: Monte Carlo modeling of the Varian TrueBeam, with chamber effects included in determination of the source parameters.
Project Title: Commissioning of an optically stimulated dosimetry (OSLD) system for in-vivo dosimetry
Project Title: A common cause of anxiety for radiotherapy patients
Project Title: On the relationship between stereotactic field dose profile and x-ray source size.
Project Title: Aide au développement d’un programme de simulation pour l’ionisation par radiation a l’échelle de l’ADN.
Project Title: Réduire les effets secondaires de la radiothérapie en exposant les patients à des conditions hyperbores.
Project Title: Modeling of Stereotactic Body Radiation Therapy Tumor Response in Lung Cancer by Monte Carlo Simulations.
Project Title: Molecular Imaging for Regenerative Medicine: Application in stem cell therapy for Radiation-Induced Lung Disease.
Project Title: EPID-based adaptive radiation therapy.
Project Title: Optimisation du traitement de curiethérapie interstitielle à haut debit de dose
Project Title: Reference Radiochromic Film Dosimetry protocol for CTDI measurements.
Project Title: Exploration of organic electronics as radiation detectors
Project Title: Reconstruction itérative en tomodensitométrie conique et prise en charge du rayonnement diffusé.
Project Title: Quantitative magnetization transfer MRI evaluation of musculoskeletal tissue
Project Title: Évaluation de l\’échographie Clarity 3D comme modalité d\’imagerie en curiethérapie
Project Title: Exploration of organic electronics as radiation detectors
Project Title: Measurement of CT Dose Using AAPM Task Group Report No. 111
Project Title: IA549 Cells Increase Oncogene Expression in MSCs
Project Title: Development of a web-portal for Opal.
Project Title: Proton therapy range verification with polymer gel and point detector array dosimetry
Project Title: Development of a non invasive beta particle detector for the determination of the arterial input function in PET .
Project Title: Nanoparticle-enhanced radiation therapy using gold-doxorubicin conjugates.
Project Title: NLP in Radiation Oncology .
Project Title: To be Added
Project Title: The development of a system for the quantification of pulmonary fibrosis progression via changes in CT densities
Project Title: Absolute dosimetry of a miniature x-ray source.
Project Title: OPAL Caregiver Application
Project Title: To be Added
The project will entail development of a caregiver app to accompany the main Opal app that has already been designed and developed by the Health Informatics Group. Opal is a mobile phone app that will allow Radiation Oncology patients to access their electronic health data. Patients may chose to share data with their caregivers and the caregivers can access the data using the caregiver app .
La protonthérapie devient une modalité de traitement de plus en plus accessible à travers le monde. Les calculs de dose les plus exacts en protonthérapie proviennent de techniques Monte Carlo, qui peuvent tenir compte des elements physiques fondamentaux (interactions, matériaux, géométrie). Or, ces calculs sont habituellemnt longs et par consequent difficilement utilisables dans un environnement Clinique. Ce projet propose d’adapter un code Monte Carlo existantm GPUMCD, au transport des protons. Ce code, qui s’exécute en parallèle sur processeurs graphiques, a permis d’accélérer significativement des calculs de doses impliquant photons et electrons. Son adaptation aux protons permet d’envisager une utilisation en clinique.
Application of hypofractionated radiotherapy to prostate cancer is dose-limited by NTCP. NTCP is potentially related to inherent radiosensitivity via copy number variations or single nucleotide polymorphism. This study seeks to explore the relation between NTCP, CWVs and SWPs (radiobiology outcome modeling).
Ex-vivo simulation of sarcoma metastasis using three-dimensional cell cultures: using bioreactors and real-time flow cytometry, sarcoma metastases response to irradiation will be gauge via biomarker expression levels and used to determine susceptibility or resistivity to radiotherapy.
1. Coates J, Ybarra N, El Naqa I. (2014) Non-invasive whole-body plethysmograph for assessment and prediction of radiation-induced lung injury using simultaneously acquired nitric oxide and lung volume measurements, Physiol Meas.35(9):1737-50. 2014 Sep .
Le calcul exact de la dose en radiothérapie repose sur la connaissance du milieu d\’interaction et du modèle utilisé pour le représenter. Plus le modèle s\’approche des caractéristiques fondamentales du milieu et des interactions, plus le résultat du calcul de dose est exact. À l\’heure actuelle, les simulations Monte Carlo sont considérées comme étalon d\’exactitude car elles reposent sur les processus fondamentaux d\’interactions. Cependant, ces techniques de calcul de dose sont relativement lentes et mal adaptées à une utilisation clinique. Ce projet vise à developer un calcul de dose s\’appuyant sur plusieurs éléments physiques fondamentaux sans passer par les méthodes Monte Carlo. Ainsi, l\’objectif est d\’obtenir un calcul analytique qui s\’approchera des résultats Monte Carlo mais beaucoup plus rapidement. Des processeurs graphiques seront utilisés à cet effet.
The potential benefit of using scattering foil free beams for delivery of modulated electron radiotherapy is investigated in this work. Removal of the scattering foil from the beamline showed a measured bremsstrahlung tail dose reduction just beyond Rp by a factor of 12.2, 6.9, 7.4, 7.4 and 8.3 for 6, 9, 12, 16 and 20 MeV beams respectively for 2×2 cm2 defined on-axis fields when compared to the clinical beamline. Monte Carlo simulations were matched to measured data through careful tuning of source parameters and the modification of certain accelerator components beyond the manufacturer’s specifications.
An accelerator model based on the clinical beamline and one with the scattering foil removed were imported into a Monte Carlo based treatment planning system (McGill Monte Carlo Treatment Planning). A treatment planning study was conducted on a test phantom consisting of a PTV and two distal organs at risk (OAR) by comparing a plan using the clinical beamline to a plan using a scattering foil free beamline. A DVH comparison revealed that for quasi-identical target coverage, the volume of each OAR receiving a given dose was reduced, thus reducing the dose deposited in healthy tissue.
The project consists in developing a new simulation platform to study the effect of different PET/MR imaging acquisition parameters on the textural features of simulated images. This software will facilitate the use on a cluster of MRI simulators JEMRIS and SIMRI and PET simulator Gate using input digital tumor models obtained from clinical data. It will also allow the fusion of PET and MRI images and the computation of a wide variety of textual features on both clinical and simulated images. The platform’s first anticipated use is to enhance the textural properties of FDGGPET and MRI images that have been identified to be strong prognostic factors in soft-tissue sarcoma cancer. MRI and PET tumor models will have to be created from clinical images to be used in the simulators A variety of MRI sequences will have to be implemented and the parameters that have an impact on computed textures will have to be isolated. Likewise, a variety of PET reconstruction algorithms will have to be implemented for both 2D and 3D acquisitions, while considering attenuation correction algorithms. Following this step, the effects of PET acquisition and reconstruction parameters on computed textures will have to be determined. Finally, to study the full potential of FDGGPET and MR textural features, the platform will have to allow convenient fusion and textural analysis of PET and MRI images. Prediction models will eventually have to be implemented, and the data formats must facilitate the use of the platform on a large number of study cases.
In this project organic electronics (with a particular focus on organic field effect transistors (OFETs)) will be designed, fabricated and tested in ionizing radiation fields to explore their properties as radiation detectors and dosimeters. Organic materials have excellent potential as radiation dosimeters due to their near water-equivalence across a wide range of energies (kilovoltage to megavoltage). Detector designs will be investigated to minimize dependencies on: direction, temperature, dose rate, energy, radiation type etc.
The potential for cheap, flexible fabrication techniques will also permit the exploration of two dimensional arrays of OFETs for planar dose measurements in a radiotherapy setting.
Group of Canadians experience radiation pneumonitis (RP) following lung cancer radiotherapy and their lung tissue becomes destroyed further. Among cancer victims, lung cancer accounts for the highest death rate in Canada and worldwide, with a 5-year survival rate of only 15% and no significant improvement over the past 3 decades. The Canadian Cancer Society expects that 24,100 new lung cancer cases will be diagnosed in 2013 with an estimated 20,600 deaths. This accounts for 27% of all cancer deaths with 87% of these cases classified in clinic as Non-Small Cell Lung Cancer (NSCLC). About 60-70% of NSCLC patients receive radiotherapy and it is the main option for inoperable locally advanced cancer patients. However, RP is a potentially fatal lung inflammation that develops in about 30% of thoracic irradiations and damages normal lung tissues within 3-6 months. Patients with RP suffer considerable morbidity and severe reduction in their quality of life. At present, there is no adequate treatment for RP, therefore, developing alternative strategies to restore lung function would ultimately enrich the Canadian capacity and expertise in the area of Medical Oncology. The objective of this proposed research is to use Mesenchymal stem cells (MSCs) from bone marrow to repair lung tissue following induction of lung cancer and RP in rats. We hypothesize that transplanted MSCs could be used to restore radiation-induced lung damage and mitigate effects of pneumonitis and its lethal fibrotic sequelae using lung cancer-induced model. As a preclinical necessary step, we will use 3 approaches to protect lung tissue; administration of Amifostine (cell protector) versus alpha-2- macroglobulin (α2M, inflammation modulator) or administration of MSCs. To ensure safe beneficial delivery and to avoid risk of interference of administered MSCs with cancer treatment or contribution to tumorigenesis, we will run our experiment on rat model that have developed lung cancer. The clinical potential impact of successful restoration of radiation-damaged lungs in vivo in lung cancer model without need for whole organ transplantation would be a key breakthrough for a new direction in treatment of millions of lung cancer patients worldwide. In addition, this study would provide new insights into lung stem cell response to irradiation, corresponding circulating biomarkers and potentially uncover new molecular mechanisms and targets for mitigating toxicity risk in radiotherapy in NSCLC.
1. Ola M Maria, Ahmed M Maria, Norma Ybarra, Krishinima Jeyaseelan, Sangkyu Lee, Jessica Perez, Mostafa Y Shalaby, Shirley Lehnert, Sergio Faria, Monica Serban, Jan Seuntjens, Issam El Naqa (2016) Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions, Applied immunohistochemistry & molecular morphology: 2016 Apr; 24(4):283-95. doi: 10.1097/PAI.0000000000000180.
The project objective is the implementation of radiochromic film dosimetry protocol for CTDI measurements as a part of annual QA on CT simulators and kV CBCT systems attached on linear accelerators. The first part of the project is development of the MatLab application for film measurements analysis. The second part of the project is the investigation of the influence of different scanning parameters on CTDI measurements and comparison of the measured and tabulated data for different CT scanners.
This project involves the design, fabrication and evaluation of various organic electronic devices for the measurement of radiation fields. Our previous work in this area has demonstrated that existing organic field effect transistors (OFETs) can be employed as radiation detectors and they demonstrate excellent linearity with accumulated dose. This project will carry out a systematic evaluation of existing and novel OFET devices with the objective of maximizing the water equivalence of the devices across as wide an energy range as possible. Variables in the design include: the shape of the active area of the device, the thickness of various device components (i.e. gate, dielectric, semiconductor) as well as the composition of the components. Different designs will be studied and the response of certain characteristics (i.e. threshold voltage and charge mobility) will be investigated as a function of accumulated radiation dose.
This summer project will involve Monte Carlo simulations of radiation transport sarcoma cancer. MRI and PET tumor models will have to be created from clinical images to be used in the simulators A variety of MRI sequences will have to be implemented and the parameters that have an impact on computed textures will have to be isolated. Likewise, a variety of PET reconstruction algorithms will have to be implemented for both 2D and 3D acquisitions, while considering attenuation correction algorithms. Following this step, the effects of PET acquisition and reconstruction parameters on computed textures will have to be determined. Finally, to study the full potential of FDG-‐PET and MR textural features, the platform will have to allow convenient fusion and textural analysis of PET and MRI images. Prediction models will eventually have to be implemented, and the data formats must facilitate the use of the platform on a large number of study cases. through proposed organic field effect transistor designs. The simulations will be designed to investigate the perturbation of the radiation field introduced by the presence of the detectors and to evaluate the water equivalence of the detector materials across a wide energy range. Device composition will be a primary focus of the work, investigating the effects of different components (i.e. gate material, insulator and semiconductor) on the perturbation as well as the physical dimensions of the detector.
Measurement of CT Dose Using AAPM Task Group Report No. 111 Dose in CT is universally measured by the computed tomography dose index (CTDI),a concept introduced nearly thirty years ago. The key reason this concept has been so widely adopted, is the simplicity of its implementation. The measurement of CTDI, involves only a 10 cm long ion chamber, dedicated CTDI phantoms, and an electrometer. Despite its wide use, most experts feel that it is time to retire the CTDI concept. CTDI systematically underestimates the dose in multi slice scanners and the concept fails to apply to cone beam scanners. These limitations of the CTDI, have been the driving force behind the formation of AAPM Task Group no. 111. This group looks into finding better metrics for evaluating CT dose, which would apply to all CT scanning modes for now and into the foreseeable future.
The report of Task group No. 111 came out in Feb. 2010. It proposes a new measurement modality using a small volume ionization chamber placed in a phantom long enough to establish dose equilibrium at the position of the chamber.
To date, the body of literature on the implementation of TG 111 is sparse and there exists an opportunity to make a substantial contribution to the field of CT dosimetry.
The goal of this project is to implement the suggestions of TG 111 in our clinic and to compare the TG 111 dose to CTDI. We will explore all areas of application, including axial, helical and cone beam CT dose and we will identify conditions in which the new proposed protocol fails.
Current techniques to acquire patient surface data are often very expensive and lack flexibility. In this study, the use of the Microsoft Kinect to reliably acquire 3D scans of patient surface is investigated. A design is presented to make the system easily applicable to the clinic. Potential applications of the device to radiotherapy are also presented. Scan reproducibility was tested by repeatedly scanning an anthropomorphic phantom. Scan accuracy was tested by comparing Kinect scans to the surface extracted from a CT dataset of a Rando® anthropomorphic phantom, which was considered as the true reference surface. Average signed distances of 0.12 ± 2.34 mm and 0.13 ± 2.04 were obtained between the compared surfaces for reproducibility and accuracy respectively. This is conclusive, since it indicates that the variations observed come largely from noise distributed around an average distance close to 0 mm. Moreover, the range of the noise is small enough for the system to reliably capture a patient’s surface. A system was also designed using two Kinects used together to acquire 3D surfaces in a quick and stable was that is applicable to the clinic. Finally, applications of the device to radiotherapy are demonstrated. Its use to detect local positioning errors is presented, where small local variations difficult to see what the naked eye are clearly visible. The system was also used to predict collisions using gantry and patient scans and thus ensure the safety of unconventional trajectories.
Cancer is often difficult to distinguish from normal tissue. This is particularly important during brain tumor resection, since patient survival and prognosis is greatly influenced by the extent of resection. The goal of the project is to assess the molecular differences between cancer and normal brain using Raman spectroscopy. This is an optical technique to observe low-frequency rotational and vibrational modes in a system.
The system is consisted of a fiber-optic probe, a laser emitting at 785 nm and a grating-based spectrometer coupled to a CCD detector. The technique has been used by the research group in vivo to discriminate cancer and normal brain, and has shown good results for classification. The next step of this project is a chemometrics analysis to determine the relative concentration of molecular components in brain tumors versus normal brain tissue.
Intraoperative radiotherapy (IORT) with the INTRABEAM ® system is used in the treatment of breast cancer and several other malignancies. During treatment, the x-ray source is housed inside a spherical applicator of diameter appropriate for the size of the surgical cavity. Currently, the treatment time is a function of prescribed dose and applicator size. The radiation dose follows a spherical distribution and falls off sharply at distance. Current prescribed dose for all breast patients is 20Gy at the applicator surface. The properties of the radiation source are taken into account when calculating the treatment time. However, inter-patient variations related to shape, size and composition of near-by tissues and organs are not taken into account. The true delivered dose therefore will differ from the estimated.
With this project, we aim to implement the use of Monte Carlo simulations for INTRABEAM® IORT. The initial work consists of selecting a Monte Carlo code that is most appropriate for modeling IORT. The following tasks will involve the definition of all source and patient parameters that are required for accurate dose calculation. The patient’s tomographic images acquired pre-surgery will be used to recognize tissue composition heterogeneities. The size of the INTRABEAM applicator will be inferred from the tumor size, while its location is related to the location of the tumor mass. The simulated doses will be evaluated extensively through measurement in humanoid phantom and water.
Mesenchymal stem cells (MSCs) have yielded promising results in regenerative therapy and have been suggested to treat radiation-damaged tissue in cancer patients. However, this remains controversial because MSC-cancer cell interactions are still unclear. Previous studies show that karyotypically normal, tumour-associated MSCs have up-regulated proto-oncogenes compared to MSCs found elsewhere. Given this, we hypothesized that bone-marrow-derived MSCs may also up-regulate proto-oncogenes if exposed to a cancerous environment.
To test our hypothesis, we extracted bone-marrow-derived MSCs from Sprague Dawley rats and co-cultured them with A549 lung cancer cells to simulate a cancerous microenvironment. This was done for 48, 72, and 120 hours in both MSCGM and F12K cancer media. Following, we reverse-transcribed the extracted RNA and monitored the expression of two proto-oncogenes, carcinoembryonic antigen (CEA) and epithelial cell-adhesion molecule (EpCAM).
There was no significant increase in EpCAM expression after 48-h and 120-h co-cultures. However, after 72-h, there was a significant increase of 1.51x in MSCGM and 5.24x in F12K medium. In contrast, CEA expression was elevated at a relatively constant level (1.46x-1.84x) after co-culture in MSCGM (48-h, 72-h, 120-h) and F12K media (48-h, 120-h). However, similar to EpCAM, CEA expression spiked to 3.39x after the 72-h co-culture in F12K.
Our results demonstrate that A549 cancer cells have a profound impact on MSC expression phenotype. Clinically, this pertains to tissue repair in cancerous environments – therapeutically injected MSCs may behave similarly to MSCs co-cultured with cancer cells. If our results hold true in vivo, MSC transplantation may pose unwarranted risk for lung cancer patients.
Compared to photons, electrons and protons, studies of atomic bomb survivors and animals have shown that neutrons can be up to 20 times more effective at inducing cancer. This radiation weighting factor is dependant on neutron energy and varies from 5 at low (< 10 keV) and high (> 2 MeV) energies to its peak of 20 at medium (~1 MeV) energies. To reduce the rate of neutron-induced second cancers, the physical mechanisms that relate the effective dose of different energies to cancer induction at the microdosimetric level must be understood.
The goal of this project is to investigate the microdosimetric differences between high and low energy neutrons in their relation to cancer risk. The objectives are to: 1) develop low-energy neutron transport for GEANT4-DNA, 2) simulate and quantify neutron interactions with DNA, and, 3) evaluate radiation weighting factors in terms of neutron energy.
1) Recently, a Monte Carlo (MC) package, GEANT4-DNA, has been developed for the transport of electrons, protons and photons at the DNA level. In this project, neutron transport will be integrated into GEANT4-DNA code leading to a complete simulation of neutrons and their secondary particles.
2) In this work, neutron production during photon and proton therapy will be simulated using GEANT4-DNA. MC neutron spectra will be compared with measurements around a linac accelerator and cyclotron using the Nested Neutron Spectrometer. Upon validation of the spectrum, it will be possible to tally the energy deposition and track-averaged linear energy transfer of neutrons and their secondary particles in the DNA molecule.
3) Our neutron-DNA model will be used to provide Monte Carlo data to correlate specific endpoints from DNA damage, such as single and double strand breaks, with neutron energies for comparison with existing neutron weighting factors. Furthermore, a biological laboratory study examining the differences of in vitro cell damage as a function of neutron energy will be undertaken in our wet lab for experimental validation.
Background and rationale
Among cancer patients undergoing radiation therapy, some will develop side effects. Radiation-induced lung disease (RILD) manifests in up to 30% of thoracic irradiations.
Stem cell therapy is currently under preclinical investigation for the treatment of RILD. Mesenchymal stem cells (MSC) have demonstrated great promise in regenerative medicine for multiple organs including the lungs.MSC have been shown to differentiate and exhibit an epithelial phenotype but more research is needed to understand and assess mechanisms of MSC differentiation. Molecular imaging has the potential to evaluate the ability of MSC for tissue repair function in vivo and non-invasively. In this work we will design and optimize imaging probes to track and monitor MSC differentiation in the context of lung regeneration after radiation-induced injury.
Objectives and research plan:
The lack of a reliable imaging tool to assess the behaviour of stem cells in the context of lung injury prompted us to design imaging probes capable of monitoring the dynamics of lung repair and differentiation.
1. Track stem cells in vivo with molecular imaging
Our lab is currently developing a rat model for RILD and cell therapy. We will use optical imaging methods to visualize and track MSC in vivo.
2. Develop a reporter gene construct to assess lung marker expression in differentiating cells
A reporter gene construct will be used to assess the expression of lung markers after differentiation induction. Promoters specific to lung epithelial cells will be used to drive the expression of a fluorescent reporter.
3. Design a biosensor to assess functional activity of differentiated cells
We will use the metabolic activity known to occur within the lung as a functional assessment of cell differentiation. The approach is to investigate cytochrome activity as basis of the design of a biosensor constructed with quantum dots nanoparticles.
4. Assess lung regeneration with microendoscopy.
With microendoscopy we are capable of non-invasively image lung status at the cellular level, in real time and this technique is also amenable to fluorescence endomicroscopy. We will therefore investigate the possibilities of using such a technique together with our imaging probes to assess MSC behaviour.
1. Gabriel Paré, Réjean Lebel, Jessica Perez, Frédéric Chagnon, Marc-André Bonin, Catherine Bibeau, Issam El Naqa, Eric Marsault, Martin Lepage and Olivier Lesur (2017) “Emerging applications of intra-vital smart micro-imaging: from bench-to-bedside “In: Microscopy and imaging science: practical approaches to applied research and education; pp:120-133. Published in February 2017.
2. Perez JR, Ybarra N, Chagnon F, Serban M, Pare G, Lesur O, Seuntjens J & El Naqa I (2017) Image-Guided Fluorescence Endomicroscopy: From Macro- to Micro-Imaging of Radiation Induced Pulmonary Fibrosis, Scientific Reports 7:17829. doi:10.1038/s41598-017-18070-x.
3. Jessica R. Perez, Sangkyu Lee, Norma Ybarra, Ola Maria, Monica Serban, Krishinima Jeyaseelan, Li Ming Wang, Jan Seuntjens & Issam El Naqa (2017) A comparative analysis of longitudinal computed tomography and histopathology for evaluating the potential of mesenchymal stem cells in mitigating radiation-induced pulmonary fibrosis, Sci Rep. 2017 August 22; 7(1) 9056. DOI:10.1038/s41598-017-09021-7.
4. Perez JR†,, Ybarra N, Chagnon F, Serban M, Lee S, Seuntjens J, Lesur O, El Naqa I. (2017) Tracking of Mesenchymal Stem Cells with Fluorescnce Endomicroscopy Imaging in Radiotherapy-Induced Lung Injury, Sci Rep. 2017 Jan 19;7:40748. doi: 10.1038/srep40748.
La curiethérapie interstititelle à haut debit de dose (HDR) est une technique de choix pour le traitement du cancer du seinet de la prostate. Il nèexiste présentement aucun système dèéchographie 3D (3DUS) suffisamment évolué pour faire la planification et le guidage en temps reel du traitment de curiethérapie HDR du sein. De plus, le nombre et la position des catheters sont choisis manuellement ce qui peut avoir comme consequence de dinimuer lèefficacité des traitements. Le but de mon projet est de déveloper et intégrer de nouvelles technologies afin de les introduire dans le protocole Clinique de curiethérapie HDR. Mon hypothèse est que ces nouvelles technologies vont permettre d’améliorer la qualité et render plus rapide les traitements de curiethérapie HDR. Mes premières investigations seront de concevoir et valider un algorithme d’optimisation de la position et du nombre de cathéterm lié à l’algorithme de planification inverse IPSA. Ensuite, une nouvelle approche sera d/velopp/e, utilisant l’échographie 3D, afin de planifier et guider en tempsGréel les traitements de curiethèrapie HDR du sein. La precision et la robustesse dèun systèeme de guidage par radiofréquence, pour les catheters, sera par la suite évaluer. Finalement, un nouveau prototype 3DUS sera développé et validé. Les nouvelles approches proposes dnas ce projet pourraient avoir un impact majeur sur les procedures cliniques en curiethérapie interstitielle HDR.
The project involves creation of biocompatible rare earth-based nanoparticles and testing them for activity against cancer in vitro and in vivo, with or without radiation therapy.
We will develop a new kind of particle for radiosensitization of tumours by direct intratumoral or possibly intravenous injection and test them in vitro and in vivo. The particles, cerium-doped lanthanum fluoride (LaF3:Ce), are made of low-toxicity constituents and have many desirable photophysical properties compared to currently existing radiosensitizers in the field. They can radiosensitize tumours on their own via the photoelectric effect, or they may be conjugated to a photosensitizer for X-ray based singlet oxygen generation.
Until the LaF3:Ce NPs are ready for experimentation, we will be doing similar work with gold nanoparticles conjugated to doxorubicin (Au-Dox). Au-Dox is effective against Melanoma xenografts as previously shown in our lab. It suppresses the growth of B16 xenografts in immunocompetent mice by 80% vs control groups.
A proposed dosimetry formalism for small and non-standard fields involves the determination of ionization chamber correction factors to convert the dose measured in a clinical plan to the dose associated with either a static machine-specific reference (MSR) field, and/or a plan-class specific reference (PCSR) composite field being as close as possible to a class of clinical plans of interest. The aim of this work is to determine, with experiments and Monte Carlo simulations, ion chamber correction factors for a large number of representative Cyberknife treatments. The experimental portion of the project will use a commercial plastic scintillation detector (PSD) as the reference dosimeter. The EGSnrc Monte Carlo package will be used to develop a model of the Cyberknife accelerator, and apply the model to calculate the ion chamber correction factors.
Investigation will begin with simple isocentric plans with a single collimator at a fixed depth in a circular phantom and will continue by systematically increasing plan complexity in order to explore the suitability of the PCSR- based correction over the MSR-based correction. The selection of an appropriate measurement location for individual patient plans and within the PCSR and clinical field is also non-trivial and will be investigated using the predicted dose gradients and verified using radiochromic film.
Specific DVH’s were converted into a new format and placed in a database to be used at the Glen Site.
Development of Monte Carlo Simulation Code for INTRABEAM® Radiation Therapy and Dosimetry Applications
Abstract:
Intraoperative radiotherapy (IORT) with the INTRABEAM ® system is used in the treatment of breast cancer and several other malignancies. During treatment, the x-ray source is housed inside a spherical applicator of diameter appropriate for the size of the surgical cavity. Currently, the treatment time is a function of prescribed dose and applicator size. The radiation dose follows a spherical distribution and falls off sharply at distance. Current prescribed dose for all breast patients is 20Gy at the applicator surface. The properties of the radiation source are taken into account when calculating the treatment time. However, inter-patient variations related to shape, size and composition of near-by tissues and organs are not taken into account. The true delivered dose therefore will differ from the estimated.
The general aim of this project is to develop a treatment planning system that will allow for treatment simulations with INTRABEAM device on patients’ CT images. Earlier work consisted of developing a Monte Carlo-based TPS; the proposed project will build on earlier results. Simulations will be performed in the CT scan of human considering tissue heterogeneities.
In addition, a clinical protocol for in-vivo dose measurement using Gafchromic film will be developed. Following the film dose calibrations, measurements will be perfomed in water and humanoid phantoms to validate the results of treatment planning simulations.
Radiation oncology patients are seldom provided with personalized treatment information. As a consequence, they are unable to fully plan their lives during radiotherapy.
In an attempt to address this issue, we have developed a novel application that is both secure and confidential and allows real-time encrypted communication via a cloud-based bridge database.
1. F. Ballester, Å. Carlsson Tedgren, D. Granero, A. Haworth, F. Mourtada, G. Paiva Fonseca, K. Zourari, P. Papagiannis, M.J. Rivard, F-A. Siebert, R.S. Sloboda, R.L. Smith, R.M. Thomson, F. Verhaegen, J. Vijande, Y. Ma and L. Beaulieu (2015) A Systematic Characterization of the Low Energy Response of Plastic Scintillation Detectors, Med. Phys. 42(6):3048.
In recent year the medical physics community has shown an increased interest in the physics and dosimetry of small MV photon beams such as those used for the purposes of stereotactic radiosurgery (SRS) and Intensity Modulated Radiation Therapy (IMRT). The delivery of small photon beams can be performed by specialized units (Cyberknife, GammaKnife, TomoTherapy) or by conventional linear accelerators equipped with highGdefinition multi-leaf collimators, such as the BrainLab MLC on the Varian Novalis Tx. Even though the above technological improvements offer highly accurate delivery of small radiation beams, several investigators have questioned if the technology has moved ahead of our understanding of basic physics principles. The purpose of this study is to study the relationship between the detectorGspecific readings and variations of the source size. As a first step, MCGcalculated correction factors will be derived for a set of small field detectors on central and offGaxis positions. The calculated correction factors could then be applied to correct each dose profile. During this process, componentGspecific perturbation factors can also be derived. The ‘true’ dose profiles can be assumed to be affected only by variations of the source size. A series of dose profile characteristics can be derived and related to variations of the source size. This process would improve our understanding of the source occlusion effect and potentially help us investigate the most sensitive parameters related to the source size. Furthermore, very small field profiles (less than 5 mm) can be studied at this step. Even though these fields are not used in radiotherapy, they can potentially be more sensitive indicators of the source occlusion effect.
On the relationship between stereotactic dose profiles and source size.
*Derive correction factors for small field dosimeters.
*Sensitivity analysis between x-ray source and detector-specific response.
1. Papaconstadopoulos P, Tessier F and Seuntjens J, (2014) On the correction, perturbation andmodification of small field detectors in relative dosimetry. Phys Med Biol. 59(19):5937-5952.October 2014.
2. Papaconstadopoulos P, Hegyi G., Seuntjens J, and Devic S., (2014) A protocol for EBT3 radiochromic film dosimetry using reflection scanning, Med. Phys. 41(12): 122101.
3. P Papaconstadopoulos, I R Levesque, R Maglieri, and J Seuntjens (2016) Direct reconstruction of the source intensity distribution of a clinical linear accelerator using a maximum likelihood expectation maximization algorithm, Physics in medicine and biology 61(3): 1078-1094; January 2016.
Proton and other light ions have a physical distribution of energy deposited that allows to better concentrate the dose to the tumor than for conventional radiotherapy. The biological response is quantified in terms of the relative biological effectiveness (RBE) for a given biological endpoint. RBE depends on the reference radiation, cell line, particle type and linear energy transfer of the irradiating particle. However, in a tumor, RBE can vary. This variation might be caused by different complexity of the DNA damage occurring in the cell nucleus due to the proximity between energy deposit sites. The relative distances between energy deposit sites change with radiation quality, and lead to different pattern formation of groups or clusters. Monte Carlo (MC) codes can be used for particle transport in matter. Track structure codes are a class of MC codes that generate in detail the spatial pattern of energy deposit sites due to the event-by-event simulation of particle interactions. Our aim is to develop and use track structure codes to search for a relationship between frequency distribution of order of clusters of energy deposit sites, as a descriptor of radiation impact, and RBE for cell survival for various radiation qualities. A method for predicting RBE values for protons on the basis of dose-response data obtained from photons will be developed and can be included in treatment plans. In addition, differences in dose distribution for proton dose plans with a fixed and modeled RBE will be compared for treatment of brain tumors in children.
Q+ – Addressing the pain of waiting.
To Be Added.
The McGill Monte Carlo Treatment Planning System (MMCTP) has been used for several research studies at McGill University and is used for some clinical applications at the McGill University Health Centre (MUHC). MMCTP calculations for 6 MV and 18 MV photon beams for the Varian Clinac 21EX linear accelerator have been tuned and validated against measured 3D water phantom data obtained using a liquid ionization chamber and an air-filled ionization chamber. The measured data were compared to EGSnrc Monte Carlo calculations using the egs chamber user code, which allows for the inclusion of detector effects in the simulation. Effects such as volume averaging and the non-water equivalence of the detector components we quantified in detailed detector models of the PTW microLion, Exradin A1SL and Exradin A12. This allowed for more accurate tuning of the beam model free parameters, such as electron energy, spot size, and angular divergence. After validation, the tuned accelerator model was implemented into the MMCTP workstation for clinical applications. The current project goal has been to investigate methods for modelling the Varian TrueBeam linear accelerator for use in future Monte Carlo simulations, beginning with the 6 MV flattened and flattening-filter-free (FFF) photon beams. Varian does not provide the proprietary information required to construct accurate models of the TrueBeam, so alternate modelling options have been explored. The first method investigated was to use the Varian VirtualLinac, a cloud-based phase space solution. The second method was to create an EGSnrc implementation of a published PENELOPE model known as FakeBeam. The third method currently being investigated is to modify the existing model of the Clinac 21EX to match Varian.
The mortality of lung cancer is amongst the highest of all cancer types and radiotherapy (RT) is used for more than 50% of lung cancer treatments. A concern for radiation pneumonitis (RP) is a major obstacle to increasing radiation prescription for better chance of tumor killing. Indeed patients show large variability in RP under similar RT plans. There are studies that patient-specific levels of particular biomarkers (proteins and genes) are responsible for such variability, which might explain inadequate accuracy of pre-existing prediction models that are solely based on dosimetry (amount of radiation deposited in body). Therefore, it is important to model RP as a system where interactions among biological and physical stimuli (radiation) take place. We will apply and further develop a statistical technique called machine learning to capture the complex relationships among biological and dosimetric variables in our prospective lung cancer patient database. The proposed project can potentially deliver a large impact on radiation oncology and radiobiology. If we can identify patient’s low RP risk by using our biophysical prediction model, they might be eligible for a more aggressive RT plan leading to a better chance of cancer cure without significantly affecting iatrogenic morbidity. Our machine-learning based approach might provide a new way to analyze and understand radiation induced normal tissue toxicities, which can be used to design better therapeutic intervention.
1. Lee S, Ybarra N, Jeyaseelan K, Faria S, Kopek N, Brisebois P, Bradley JD, Robinson C, Seuntjens J, El Naqa I. (2015) Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk, Med. Phys. 42(5): 2421.
2. Lee S, El Naqa I. (2015) Machine Learning Methodology. In El Naqa I, Li R, Murphy MJ, Machine Learning in Radiation Oncology, (pp. 21-39), Springer International Publishing.
3. O.M Maria, AM Maria, N Ybarra, K Jeyaseelan, S Lee, J Perez, MY Shalaby, S Lehnert, S Faria, M Serban, J Seuntjens, I El Naqa (2015) Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions. Applied immunohistochemistry & molecular morphology: (July 2015, pub, ahead of print).
4. S Lee*, N. Ybarra, K. Jeyaseelan, S Faria, N Kopek, I El Naqa (2015) Bayesian Network Representation of Radiation Pneumonitis Onset After Hypofractionated Stereotactic Body Radiation Therapy (SBRT) for Lung Cancer, ASTRO’s 57th Annual Meeting, San Antonio, TX, October 18-21, 2015. International Journal of radiation oncology, biology, physics 11/2015 93(3):S54-S55.
La dose de radiation impliquée au cours de procédures de radiologie interventionnelles guides par fluoroscopie (IGF) soulève certaines inquietudes en raison d’un niveau avoisinant ou surpassant le seuil d’appaarition des effets determinists, En effet, il n’est pas rare que la peau absorbe une dose de plusieurs grays au cours de la procedure, un niveau comparable à une séance de radiothérapie. Curieusement, la donse n’est pas mesurée durant l’intervention. Seule une evaluation de certains parameters dosimétrique est disponible, mais ceuxGci ne fournissent aucun renseignement sur la dose absorbée à la peau ou à quelque organe que se soit. En consequence, la dose peut dépasser le seuil d’occurrence des effets determinists sans être détectée. Le but du projet consiste à metre au point un prototype de dosimèetre permettant de mesurer la dose à la peau un temps reel au cours d’une procedure IGF. Ce système utilise une fibre scintillante émettant de la lumière lorsq’elle est exposée aux radiations, ainsi que d’un tube photomultiplicateur collectant le signal produit. Le projet comporte quatre phases principales. La calibration du détecteur a d’abord permis d’ observer sa réponse en fonction de la dose recue. Des mesures aréalisées sur un fantôme humanoide ont ensuite servi à valider le fonctionnement du prototype dans des conditions cliniques d’intervention. La troisième phase vise essentiellement à relever des mesures auprès des patients, quoique ces demarches n’aient pas été engages jusqu’à present. Parallèlement à ces experiences, un modèle informatique de la sale de radiologie interventionnelle a été construit en vue de simuler par calcul Monte Carlo la distribution de dose en surface et à l’intérieur d’un patient, puis auprès du personnel exposé.
The risk of developing a solid tumor after exposure to ionizing radiation is well established via a linear dose effects x, for the range of radiation dose from 0.2 to 2 Sv. However, the epidemiology does not provide information and responses to the emergence of secondary tumors induced by ionizing radiation in patients undergoing radiotherapy treatments, where a small volume of the patient is irradiated with high doses of radiation (treatment dose) and the remainder of the body is subjected to low and medium doses due to the inevitable unwanted radiation that reaches areas outside the treatment area.
The objective of this research is to quantify, through experimental measurements and computer simulations using the Monte Carlo method, the unwanted dose outside the treatment area, that patients undergoing radiotherapy sessions are exposed to and that, according to the most current literature, has enormous potential to produce secondary tumors in parts of the body distant from the region primarily treated. This study is important in particular in the case of pediatric cancers, where the life expectancy of patients, and therefore the likelihood of developing secondary tumors, is higher.
To accomplish this objective, it is intended to simulate values of doses deposited in various organs in the body of patients undergoing radiotherapy sessions, especially for regions where experimental measurements would be difficult. This can be done using phantoms based on volume element, known as voxel phantom. It is also intended to perform several experimental measurements using dosimeters such as thermoluminescent, diodes or MOSFET in phantoms that simulate the human body.
The goal of the project is to develop a novel radiation detector for dosimetric purposes. The detector will be based on the principle of interferometry. An electro-optic crystal placed in the probing arm of the interferometer will change its refractive index when exposed to ionizing radiation, making possible a measurement of the dose to the crystal. This can be used to calibrate the radiation source for use on patients in the clinic.
The main objectives in cancer treatment by radiotherapy is to deliver a high dose of radiation to the tumor while sparing as much as possible healthy tissues. During the past decades, gold nanoparticles have shown interesting properties to enhance energy deposition in tissues. Either by specific targeting or by the enhanced permeability and retention (EPR) effect, nanoparticles can accumulate preferentially in tumors, thereby delimiting a local increase in dose deposition and thus permiting to reduce the dose given to healthy tissues. In our work, we conjugate gold nanoparticles with doxorubicin, a chemotherapeutic agent. We therefore act on two simulatenous fronts, namely with chemotherapy and nanoparticle-enhanced radiotherapy treatments. We use a murine model in which B16 melanoma cells are grafted subcutaneously on the flank of the mice. Intratumoral injections of gold-doxorubicin conjugates are then given, followed by a single dose of irradiation. The effectiveness of the treatment can then be compared to the control groups and the dose enhancement be quantified. In order to understand the mechanism of dose deposition through the use of nanoparticles, Monte Carlo simulation are also developed using Geant4. This helps us to find the optimal enhancement parameters in terms of photon energy, nanoparticle size, nanoparticle concentration, spatial distribution, etc. The aim of this project is to test different experimental conditions in order to determine the best combination that will allow us to cure the mice by a complete eradication of the tumors.
Magnetic resonance imaging (MRI) can visualize musculoskeletal (MSK) tissue and also obtain quantitative information about structure, content and mechanical behavior. We are seeking non-‐invasive biomarkers of early disease related to the mechanical properties of the tissue, as any successful treatment of joint disease must restore joint mechanical function. This project will develop and validate a potential biomarker for tissue degeneration processes in MSK tissue based on a non-‐ invasive MRI exam, from which we can infer mechanical function of these tissues. This marker will allow us to better track disease progression and evaluate treatment effectiveness. As an integral part of a large collaborative project with scientists and clinicians at Stanford University, we will use an approach called magnetization transfer (MT) MRI, known in neurology for brain white matter diseases, to quantify non-‐aqueous macromolecular components of tissue (proteins and lipids). MSK tissues also show MT effects linked to matrix proteins. This project will consist largely of analyzing data already collected in pilot scans in six cadaver knee specimens, and using the results of this analysis to plan future methods development. These methods will subsequently be used in a cohort of patients with osteoarthritis, a disease that affects MSK tissues. The method of MT MRI has broader applications, notably in brain imaging, and has been proposed for characterization of cancer tumor cellularity and muscular pathology.
Dans ce projet, le stagiaire de recherche sera appele a étudier la complementarite de l’imagerie TEP et IRM pour l’etude de la reponse aux traitements de radiotherapie des sarcomes des tissus mous. Les sarcomes constituent un groupe relativement rare de neoplasmes se developpant principalement dans les muscles des extremites du corps, et possedant un risque metastatique eleve. Une plus grande comprehension de leur biologie fonctionnelle est requise afin d’envisager des traitements mieux adaptes a chaque patient dans le but d’ameliorer le taux de survie. Pour ce faire, le stagiaire de recherche analysera les images de 15 patients ayant reçu 4 differents types de scans TEP et IRM a 3 moments differents durant la gestion du traitement de radiotherapie (avant, pendant, et apres le traitement), pour un total de 180 scans. Les 4 types de scans TEP et IRM sont les suivants : 1) [18F] fluorodeoxyglucose -TEP, un type de scan permettant d’etudier le metabolisme des tumeurs, une caracteristique reliee à l’agressivite tumorale; 2) [18F] fluoromisonidazole -TEP, un type de scan permettant d’etudier les divers degres d’oxygenation à l’interieur des tumeurs, une caracteristique reliee à la résistance tumorale à la radotherapie; 3) Diffusion-weighted MRI (DW-MRI), un type de scan permettant d’etudier les divers degres de diffusion de l’eau a travers les tumeurs, une caracteristique reliee à la densite cellulaire tumorale ; et 4) Dynamic contrast-enhanced MRI (DCE-MRI), un type de scan permettant d’etudier les divers degres de perfusion des tumeurs, une caracteristique reliee à la vascularisation tumorale. Ce groupe d’images d’images rassemblees par le Centre Universitaire de Santé McGill (CUSM) lors des trois dernieres annees est unique au monde.
To Be Added
The incorporation of multimodality treatment planning into radiation therapy has seen increased clinical usage over the past decade. Adaptive radiotherapy is the process of incorporating inter-treatment anatomical information into the treatment planning process. This necessitates adapting three objectives; target definition, patient volume registration and beam parameters to the daily context which is often determined using on-board imagers such as cone-beam CT (CBCT) and mega-voltage CT (MVCT).
This project aims to address outstanding problems associated with the practical application of online adaptive radiotherapy such as the use of imaging modalities with poor contrast-to-noise ratios and the time required for treatment re-planning. This is done by investigating the use of the Jensen Rényi divergence metric to re-optimize segmentation, registration and beam parameters. This general divergence metric has been shown to provide improved noise tolerance making it ideal for use with modalities such as CBCT and MVCT. Improved efficiency is accomplished by coupling
the energy functions of each of the objectives and performing them simultaneously, leading to iterative improvement of each process by the other two. By using an adaptive mesh that conforms to the volume geometry, leveraging the GPU and prioritizing which control points to evaluate during optimization, further reductions in processing time can be realized. The goal of this project is the development of algorithms to realize the clinical practicality of online adaptive radiotherapy planning.
1. D. Markel, H. Zaidi, I. El Naqa (2013) Novel Multimodality Segmentation using Level Sets and Jensen-Renyi Divergence, Med. Phys. 40(12), 121908, December 2013.
2. James C. L. Chow, Runqing Jiang, Alexander Kiciak and Daniel Markel (2016) Dosimetric comparison between the prostate intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans using the planning target volume (PTV) dose–volume factor, Journal of Radiotherapy in Practice 15(02), 6 pages. Published online April 21, 2016.
3. D. Markel, I. Levesque, J. Larkin, P. Leger, I. El Naqa (2016) A 4D biomechanical lung phantom for joint segmentation/ registration evaluation, Phys Med Biol. 2016 Oct 7;61(19):7012-7030. Epub 2016 Sep 20.
The goal of this project is to use a deformable image registration algorithm to deform a CT scan acquired for treatment planning onto one or more daily CBCT acquired prior or after the delivery of a treatment fraction in order to generate a new dataset for plan evaluation. The parameters of the deformation algorithm will be adjusted so that the registered image will possess the accurate CT numbers of the planning CT and the correct ‘anatomy-of-the-day’ from the CBCT. Thus, we hypothesized that the registered image could be used in a treatment planning system to compute the dose actually received by the patient for a given treatment fraction and assess whether this plan still meets its clinical objectives.
Les scintillateurs plastiques ont fait leur preuve dans le domaine de la dosimétrie et leurs avantages sont bien connus. Leur application permet entre autres de calculer des doses in vivo et en temps réel. Par contre, les détecteurs a scintillateurs plastiques (PSD) actuels ne permettent qu’un seul point de mesure par fibre collectrice, ce qui est un désavantage lors de certaines applications clinique. Une alternative a ce problème est le détecteur a scintillateurs plastiques multi-points (mPSD), car il ne requiert qu’une seule insertion de détecteur et permet le calcul de dose a plusieurs points simultanément. Le but de ce projet est de caractériser la chaine optique d’un mPSD a 2 points dans le but d’optimiser la sélection de ses composantes. Plusieurs détecteurs sont construits a partir de quatre scintillateurs plastiques et de points quantiques. Les scintillateurs sont couples a une fibre optique collectrice et ensuite connectes a un spectromètre. La partie scintillante est irradiée a une énergie de 125kVp pour éviter la contamination Cerenkov. Les spectres individuels pour chacun des scintillateurs sont mesures en irradiant un seul point a la fois et en blindant le deuxième point. Aussi, les spectres combines de toutes les combinaisons de scintillateurs sont mesures en irradiant les deux composantes en même temps. La forme et I’ intensité de ces spectres sont ensuite étudiées.
Évaluation de l’échographie Clarity 3D comme modalité d’imagerie en curiethérapie. Le système de la sonde échographique Clarity 3D permet la fusion entre les images ultrasons (3DUS) et les images CT. Le but du projet est de déterminer si la planification de traitement est améliorée, dans les cas de cancer du col de l’utérus, en utilisant ces images fusionnées au lieu de celles du CT uniquement. Une meilleure image est définie, dans le cadre de ce projet, comme une image se rapprochant des images par RM. Dans un premier temps, les contours faits par trois médecins
sont évalués pour vérifier la variation de délimitation des différentes structures d’intérêt (utérus, col, HR-CTV et rectum/sigmoïde) pour les 4 modalités d’imagerie étudiées (IRM, CT, 3DUS, 3DUS-CT). L’analyse de comparaison des contours est effectuée de plusieurs façons : 1 ) comparaison des volumes absolus, 2) comparaison de dimensions absolues et 3) comparaison des coefficients de Dice. A la fin de cette étape, il sera possible de conclure sur la qualité
des contours obtenus grâce à la fusion des images 3DUS et CT. La deuxième étape du projet est la planification de traitement sur les images fusionnées et la comparaison de ces plans avec ceux des autres modalités d’imagerie pour vérifier s’il y a une amélioration de la qualité du plan de traitement obtenu avec les images 3DUS-CT. À la fin de ce projet, il sera alors possible de conclure si le système permet une amélioration de la qualité du traitement, et si les images peuvent remplacer les IRM
The project is to investigate the dosimetry of Au NP in biological cell and nucleus by using Geant4 and Geant4-DNA. Due to the gold coating, large number of auger electrons are generated and the energy deposits locally. The scope of the project includes a) investigate for single Au NP the dose enhancement ratio and its relation with gold coating thickness; b) investigate relationship between cellular dose and Au NP density; c) invesigate different cell models.
The project is to investigate the dosimetry of Au NP in biological cell and nucleus by using Geant4 and Geant4-DNA. Due to the gold coating, large number of auger electrons are generated and the energy deposits locally. The scope of the project includes a) investigate for single Au NP the dose enhancement ratio and its relation with gold coating thickness; b) investigate relationship between cellular dose and Au NP density; c) invesigate different cell models.
Modeling of Stereotactic Body Radiation Therapy Tumor Response in Lung Cancer by Monte
Carlo Simulations: In cancer radiotherapy, it is conventional to administer a dose of radiation in small daily fractions over a few weeks, while using the linear quadratic model (La)to predict tumor response and healthy tissue complications. However, application of LQ formalism to non-conventional regimens such as stereotactic body radiation therapy (SBHT) in non-small cell lung cancer (NSCLC) has been controversial with no current acceptable solution. We propose a multiscale simulation framework that could be effectively utilized to build better predictive models of SBRT than simplistic LQ formalism.
The framework would be based on detailed Monte Carlo track structure simulations of the
direct and indirect energy depositions in and near DNA molecules, followed by the simulation of molecular and cellular processes of DNA repair, in order to predict cell survival curves.
It is anticipated that this simulation framework for predicting tumor response in SBRT of lung cancer patients accounting for temporal and spatial information will demonstrate its superiority to current LQ approaches or data-driven approaches, as well as help explain their shortcomings. Simultaneously, it will allow for better predictions and understanding of the underlying biology of tumor cell response to radiation. Fundamentally, it is expected that this framework will guide physicians in correct prescription doses adapted for individual patient based on characteristics such as sex, proximity to healthy tissue and organs, age, tumor staging, tumor morphology, etc .
1. Pater P, Bernal M. A., Seuntjens J, I. El Naqa (2014) On the Consistency of Monte Carlo Track Structure DNA Damage Simulations, Med Phys 41(12):121708.
2. Piotr Pater, Gloria Backstrom Fernanda Villegas, Anders Ahnesjo, Shirin Enger, Jan Seuntjens and Issam El Naqa (2016) Proton and light ion RBE for the induction of initial DNA double strand breaks, Med Phys. 43(5):2131. doi: 10.1118/1.4944870, 2016 May.
Le projet consiste en concevoir un algorithme de reconstruction novateur en tomodensitométrie à géométrie conique, une modalité d’imagerie médicale volumétrique. L’algorithme pourra classer des projections dans un nombre fini de phases, correspondant par exemple au cycle respiratoire, et reconstruire une image de qualité avec peu de projections pour chaque image. L’approche itérative est nécessaire ici pour intégrer divers a priori physique dans le problème.
To Be Added
Radiotherapy patients face three important waiting periods during treatment. The first is the treatment planning delay (days to weeks) from CT simulation until first treatment; the second is the daily treatment delay (minutes to hours) in the waiting room before each fraction is delivered; the third is the consultation delay (minutes to hours) experienced several times over the course of treatment before meeting with a physician. All three delays are difficult for staff to predict and typically only rough estimates are provided. These uncertainties are a major source of concern for patients whose lives are at the mercy of timely treatments and consultations. Waiting time uncertainties are also a source of stress for staff who must shuffle schedules and inquiries from concerned patients without confidence in the answers they provide.
The primary goal of my project is to provide radiotherapy patients with personalized predictions regarding the time they will wait for the provision of care in the Department of Radiation Oncology at the MUHC.
Central to the generation of waiting time estimates is an appropriate machine-learning algorithm. Machine learning is a subfield of artificial intelligence in which computer code is carefully designed to recognize patterns in existing data and learn from them so as to make predictions for future data. Large data sets, such as the MUHC’s radiotherapy database, are required, and thus will be used, for the application of machine learning to predict waiting times in the Department of Radiation Oncology.
To Be Added.
Development of the web-portal portion of the Opal project.
A common cause of anxiety for radiotherapy patients is the fact that they do not know how long they will have to wait for treatment to start following preliminary scans. In this project,we attempt to provide an more precise estimate of radiotherapy patient wait time based on electronic health records. For this estimate, we shall extract as much data as possible from previous patients and use machine learning algorithms to extrapolate an approximation. A major issue with data extraction is that the data is not “clean”, and hence require special filtering. This filtering is very tricky because we want to include as much data as possible without compromising the accuracy of the data. It has been shown in the past that the effect of patients’ primary oncologist, diagnosis, age, priority, treatment season, and gender were potential explanatory variables. Furthermore, the oncologist, diagnosis, and priority of the patient were identified as the key factors affecting wait time. Previous machine learning implementations brought the estimate of waiting time to within 4 days. By incorporating a more robust data filtering as well as taking into account more variables, this project has for objective to reduce the error to ~2 days.
Development of Patient-reported Outcome Questionnaires for Opal – This project involves developing front-end and back-end software to support provision of patient-reported outcome questionnaires in the Oncology Portal and Application. A combination of clinician-provided and CTCAE-PRO questions was facilitated.
This project will follow-on from the MSc project of Ackeem Joseph. It will involve refining existing and testing new machine learning algorithms to predict waiting times in Radiation Oncology and in Chemotherapy.
This project will involve integration of push notifications into Opal – the MUHC’s Oncology Portal and Application. The student will undertake a research project that will provide significant computer programming experience. The student will be exposed to app development for Apple and Android devices and to development of a backend infrastructure to communicate with a hospital electronic medical record.
The project will involve push notification design and implementation initially but will evolve to include other aspects of the development and beta-testing of Opal.
To Be Added
To Be Added.
To Be Added.
To Be Added.
Quantitative myelin imaging techniques must overcome the challenge of imaging protons with very short T2 times (10 μs < T2 < 1 ms). Efforts to image this fast-decaying tissue component include both direct and indirect myelin imaging techniques. The former is known as “ultra-short echo time (TE) imaging” and the latter includes multiexponential T2 (MET2) imaging. MET2 imaging involves acquiring images at multiple TEs, resulting in a T2 decay curve. Analysis of T2 relaxation data obtained in white matter has repeatedly lead to the identification of three distinct components: T2>1 s (assigned to cerebrospinal fluid), T2 ~ 70G100 ms (intra/extracellular water), T2 ~ 10G40 ms (myelin water). The gold standard for obtaining a T2 relaxation curve is a single-slice multi-echo-spin-echo sequence. However, this method does not have multi-slice imaging capability and the acquisition time is long (≈ 26 min). Alternative myelin water imaging techniques have been proposed, including: a 3D GRASE-based approach, T2Gprep spiral imaging, multicompartment analysis of T2* decay using multi- gradient echo imaging, mcDESPOT, and linear combination myelin imaging. Although many of these techniques hold promise, various questions need to be addressed before they can be reliably applied in a clinical setting. With the exception of mcDESPOT, none of the aforementioned imaging methods model the effects of water exchange. Their reproducibility must be assessed, and comparisons between techniques should be made within the same subject group. The project is aimed at investigating these issues and improving upon the proposed acquisition methods.
1. Alonso-Ortiz E, Levesque IR, Pike GB, (2014) MRI-based myelin water imaging: A technical review, Magn Reson Med. 2015 January. doi: 10.1002/mrm.25198.
2. Eva Alonso-Ortiz, Ives R. Levesque, Raphaël Paquin and G. Bruce Pike (2016) Field inhomogeneity correction for gradient echo myelin water fraction imaging, Magnetic Resonance in Medicine, on line July 15, 2016 – 9 pages [Epub ahead of print].
Les dosimeters à scintillation sont des détecteurs de radiations employés en physique médicale permettant de caracrériser des faisceaux de radiation opnisante et d’évaluer la dose dans un milieu. Le signal brut produit dans un tel détecteur multipoint s’étend sut tout le sprectre électromagnétique visible et est la somme de la scintillation des différentes scintillanterus et de l’effet Chervenkov de la fibre optique. Le défi technique est de découpler ler n+1 signaux provenant des n specters de scintillations et du bruit Chervenkov afin de determiner la dose recue au sein des scintillanterus. Un formalisme théorique a été developé par notre groupe afin d’arriver à cette fin. Mon projet se concentre à optimiser et étendre cette technique d’analyse de signal. La méthodologie employee fait usage de simulations numériques afin d’évaluer ler performances du formalisme ainsi que l’ensemble de parameters offrant les meilleurs rendements. Un modèle de bruit a été obtenu à partir de mesures en laboratiure et permet de générer numériquement des mesures bruitées pour tester la robustesse de l’algorithme. À paritr d’un lot de composantes optiques disponibles sur le marché, un ensemble de 4 millions de configurations a été généré et testé afin de determiner de sortio sur les valeurs de doses obtenues est du même niveau que l’erreur sur le desures bruitées fournit en entrée. Ces résultats permettent de guider la suite des efforts fournis par notre groupe dans le développement de ce prototype.
PET/CT imaging of the urinary system is typically plagued by slow but intense accumulation of signal from radio-tracers finding their way into the urine. Such a signal can overshadow signals of valuable diagnostic information, such as that coming from extratumoral lesions close to the urinary tract. The use of 4D acquisition yields important information on the areas subject to urine signal accumulation, since the urine signal starts becoming prominent in the middle of a typical acquisition period.
The goal of this project is to develop and test a method to subtract the contribution of the urine to the PET signal by factoring in time information provided by 4D acquisitions. To achieve this goal, algorithms will be developed and tested both in the
image and sinogram spaces. Access to sinogram space will require homemade reconstructions from list-mode data using already existing tomographic reconstruction packages.
Testing of the solution will be done both on phantom and patient data. Patient data will be coming from a parallel study investigating the use of isotope FECh in Prostate Cancer. Phantom data will be acquired using a homemade phantom consisting of
catheters representing the urinary tract passing close to radioactive sources simulating signals from eventual extratumoral lesions. The relatively stronger urine signal accumulation will be simulated by passing radioactive liquid through the catheter during 4D acquisition. Developed algorithms will seek to eliminate the signal from the urine while keeping the signal from the lesions intact.
To be added .
1) To Be Added
In this study, an OSLD system which can be used for measuring and monitoring patient doses during treatment will be investigated. This system uses the nanoDots OSLDs (Landauer, Inc., Glenwood, IL) which are basically a roughly 1 cm by 1 cm light-tight plastic infused with aluminum oxide doped with carbon (Al203:C) crystals. This crystal when exposed to radiation can store energy that is released via luminescence (420 nm) when they are stimulated using a light of wavelength around 525 nm. The stimulation and read-out is usually carried out using fur Microstar Reader also produced by Landauer. This system has been shown by several researcher to be relatively better for in vivo dosimetry compared to film and TLDs.
The aim of this work is to investigate and probe the OSLD system based on different clinical/dosimetric requirement in view of commissioning it for our clinic.
To Be Added
La guidage électromagnétique offre de nombreuses possibilités en brachythérapie. Il assiste lors de l’exécution du plan de traitement en offrant une option de navigation pour porter le cathéter à la position planifiée. Il peut également dans le cas de brachythérapie bas débit de dose être utilisé pour savoir ou ont été déposés les sources radioactives. Enfin, il peut être d’un avantage particulier pour ajuster un plan : en brachythérapie à haut débit, le guidage électromagnétique permet une reconstruction plus précise des cathéters en comparison avec les modalités conventionnellement utilisées (ex. tomodensitomètre) et le plan initial peut être réajusté précisément sur la base de la reconstruction 3D offerte par le guidage électromagnétique .
Notre équipement expérimental qui inclut le matériel de guidage et le système de planification de traitement a été développé par la compagnie Philips. Au sein de notre laboratoire, les étapes qui ont permis l’évaluation de l’exactitude de position et d’orientation du guidage électromagnétique ont été en bonne partie résolues . Ces étapes ont confirmé l’intérêt qu’il y avait à porter cette technologie de guidage en clinique.
Le projet se concentrera donc principalement sur un premier essai patient ù le guidage électromagnétique sera intégré dans une opération de brachythérapie haut débit pour la prostate. Dans ce contexte clinique, les enjeux porteront sur une validation dosimétrique du guidage électromagnétique, de son adaptation en environnement clinique et sur l’interopérabilité du système de planification de traitement expérimental avec celui clinique.
1) TO be added.
L’élève aidera Yunzhi Ma, assistant de recherche, à la création d’un programme (Open-DNA) utilisant comme plateforme OpenCL. Pour ce faire, l\\\’étudiant devra s’initier à Geant-4, OpenCL, PyOpenCL, C++ et Python. L’étudiant aidera et améliorer le code du programme ainsi qu’à comparer les résultats avec le programme avec Geant4-DNA .
To Be Added.
Le projet consiste à réduire les effets secondaires de la radiothérapie en exposant les patients à des conditions hyperbares. Cela implique d’effectuer des essais sur de petits animaux, toutefois avant de procéder à ces expériences, on doit procéder à un ensemble de mesures expérimentales pour certifier que les irradiations d’animaux peuvent se faire précisément. Donc, on va effectuer la planification de radiothérapie pour un petit animal. L’objectif principal est de déterminer expérimentalement une technique d’irradiation pour de petits animaux afin d’étudier les dommages à la peau.
To Be Added
Les plus récentes techniques de traitement de radiothérapie permettent d’administrer de façon dynamique des doses complexes, modulées en fonction des spécificités de chaque patient. Cependant, les détecteurs bidimensionnels, les films et les gels dosimétriques actuellement disponibles pour effectuer l’assurance-qualité de ces traitements ont évolué beaucoup plus lentement et se retrouvent mal adaptés au caractère dynamique et volumétrique des doses reçues par les patients. Ce caractère appelle à la conception d’un système de dosimétrie pleinement
tridimensionnel, en temps quasi-réel.
Notre groupe de recherche a développé un premier prototype répondant à ce besoin, grâce à un cube de scintillateur plastique et une caméra plénoptique. Le matériau plastique utilisé absorbe la radiation de manière similaire aux tissus humains et émet un rayonnement lumineux proportionnel à la dose absorbée. Ce patron lumineux est ensuite capté par la caméra plénoptique à intervalles réguliers lors du traitement, puis un algorithme de reconstruction tomographique est appliqué
pour obtenir la distribution spatiale de la dose déposée.
Le prototype ayant fait une preuve de concept doit maintenant être raffiné pour satisfaire pleinement aux exigences du milieu clinique. Premièrement, le système optique utilisé doit être amélioré pour collecter efficacement la lumière émise sur une plus grande plage d’angles, sans toutefois en venir à entraver l’irradiation. Deuxièmement, l’algorithme de reconstruction doit être révisé afin de permettre une reconstruction plus rapide, précise et juste de la distribution tridimensionnelle de la dose à partir du signal lumineux .
To Be Added
This project will focus on the development of a robust framework to incorporate patient-reported outcomes questionnaires into the Opal app. Patient-reported outcomes are increasingly used in medicine to obtain direct patient-provided information regarding symptoms, side effects and quality of life. This project will expand on the existing questionnaires in the Opal app to allow them to be used in a real clinical setting with clinical and research blackened tools .
To Be Added.
The project involves determining the most appropriate way to visualize waiting times in oncology. The student will work on extracting data regarding the various types waiting that can be experienced and will determine the most appropriate way to present such waiting times so that they may be useful to both the patient and the health professional .
To Be Added.
To Be Added
To Be Added.
Les CT à énergie multiple (MECT) ou à double-énergie (DECT) deviendront rapidement accessible dans les départements de physique des radiations. Ils peuvent potentiellement amener des améliorations majeures entre autre pour la délimitation des zones tumorales ainsi que pour augmenter la précision de mesure du pouvoir d’arrêt massique en proton thérapie et carbone thérapie. Les premières étapes de l’étude démontrent que l’utilisation de DECT réduit l’erreur sur le pouvoir d’arrêt massique de 3% à 1.0%. De plus, l’étude à aussi suggérer que l’utilisation en combinaison avec les CT en proton peut réduire cette erreur d’un facteur 5. Les CT en proton et en carbone sont développés maintenant en utilisant la connaissance des DECT pour augmenter la précision sur les pouvoirs d’arrêt massique.
Les MECT peuvent aussi avoir un rôle majeur à jouer dans la délimitation de la tumeur entre autre à cause de large variance entre les observateurs lorsqu’ils délimitent la tumeur. Cette variance peut être aussi large que 10-15% et peut mener à de très larges volumes tumoraux non-nécessaires dus à ces incertitudes. Le projet va investiguer l’utilisation de plusieurs images CT à énergie unique (30,40 et 50 keV) pour augmenter le contraste entre la tumeur et les organes autours ayant une densité approximativement équivalente. La majorité du projet sera fait en Monte Carlo et/ou avec les logiciels d’imageries du département de Radio-Oncologie et Radiologie du MGH.
1. Collins-Fekete C-A, Plamondon M, Martin A-G, Vigneault É, Verhaegen F, Beaulieu L. (2014) Quantifying the effect of seed orientation in postplanning dosimetry of low-dose-rate prostate brachytherapy, Med. Phys. 41, 101704.
2. Collins-Fekete C-A, Plamondon M, Martin A-G, Vigneault É, Verhaegen F, Beaulieu L. (2015) Calcifications in low-dose rate prostate seed brachytherapy treatment: post-planning dosimetry and predictive factors, Radiotherapy Oncology. 114(3):339-44.
3. Collins-Fekete C-A, Dias M.F., Doolan P., Beaulieu L., Seco J. (2015) Developing a phenomenological model of the proton trajectory within a heterogeneous medium required for proton imaging, Physics in Medicine and Biology 60(13): 5071-5082.
The INTRABEAM system (Carl Zeiss, Germany) is a miniature x-ray source for use in intraoperative radiotherapy and brachytherapy. Currently, this source is calibrated in a relative way using an indirect measurement of absorbed dose (energy per unit mass). The absolute primary standard for measuring absorbed dose from ionizing radiation is calorimetry, whereby dose is measured directly via temperature change of a medium. Thus, the ideal calibration technique for miniature x-ray sources would be calorimetry-based. The purpose of the project is to evaluate the current dosimetry formalism of the INTRABEAM system, and to develop a calorimetry-based absorbed dose protocol for these sources.
A monte carlo model of the INTRABEAM source has been developed and validated in-air using the EGSnrc particle transport code [1]. Using this model, ionization chamber correction and conversion factors can be accurately calculated for the INTRABEAM source, and compared with accepted values. Next, the feasibility of performing a calorimetric dose measurement with the INTRABEAM source will be investigated.
The time-dependent temperature gradients generated from the radiation dose nad source self-heating will be modeled using a finite-element solver (COMSOL). These thermal modeling results will be used to optimize the design of a water calorimeter specific for the INTREABEAM source. A prototype calorimeter will then be constructed, and characterized in terms of stability and noise. One characterized, dose measurements with the calorimeter will be performed and compared with ionization chamber and radiochromic film measurements.
The establishment of a calorimetry-based dose protocol for miniature x-ray sources, such as the INTREABEAM system, would help reduce dosimetric uncertainties. This increased confidence in delivered dose would allow for direct comparison between INTRABEAM and other existing commercial miniature x-ray devices. It would also assist with investigating the use of INTRABEAM at different cancer sites in the body and for combining INTRABEAM treatments with external beam radiotherapy. Most importantly, reducing the uncertainty of delivered dose will ultimately leads to improving the lives of patients.
1. Watson PGF, Popovic M and Seuntjens J. (2018) Determination of absorbed dose to water from a miniature kilovoltage X-ray source using a parallel-plate ionization chamber, Phys Med Biol. 63: 015016, 2017 Oct 23. doi: 10.1088/1361-6560/aa9560.
2. Watson PG and Seuntjens J. (2016) Technical Note: Effect of explicit M and N-shell atomic transitions on a low-energy x-ray source, Med Phys. 43(4):1760. doi: 10.1118/1.4943954, 2016 April.
Prior to the administration of radiation therapy imaging must be performed in order to localize the tumor and the organs at risk which surround it. Currently CT is most common imaging modality used to obtain these planning images. Since ionizing radiation is used in CT this leads to the deposition of extra dose to patient. Also CT scans lack high soft tissue contrast causing the location of the tumor to be difficult to
determine. MRI is able to create images with a large degree of soft tissue contrast without the use of ionizing radiation. This allows for reduction of error margins which results in more accurate treatments to the patient all while removing the dose given to the patient during imaging. The use of MRI in radiation therapy planning is on the rise and is expected to play a significant role in the future. This study will investigate the feasibility of the multi echo gradient echo (MEGRE) pulse sequence for obtaining planning images and will attempt to optimize the MEGRE parameters to obtain the best possible treatment planning images. Distortion fields created by the MRI will also be examined in order to improve the accuracy of the obtained images. This will allow for the creation of a MEGRE pulse sequence which could possibly be used in clinical
radiation therapy planning to improve cancer care .
To Be Added
La curiethérapie est une technique thérapeutique qui donne des radiations hyper localisées. Le principe est de faire entrer un élément radioactif, par le biais de cathéters, dans le corps, à l’intérieur ou le plus près possible de la tumeur cancéreuse. Cette technique est aussi utilisée pour traiter des cancers de la peau en déposant, sur la zone cancéreuse, un applicateur externe où l’élément radioactif peut être introduit. Les applicateurs commerciaux sont dispendieux et souvent à utilisation unique. Ces derniers sont des feuilles de cathéters que l’on taille puis fixe au patient le temps de son traitement. Lorsque la surface est très courbée, un crâne, par exemple, l’application de cette feuille est non précise.
Un débit ainsi qu’une durée d’exposition sont prévus en amont. Lors de ces calculs, le logiciel considère un volume rempli d’eau partout autour de l’élément radioactif. Cela créer une erreur systématique sur la dose réellement distribuer puisque la source est réellement entourée du patient et d’air.
Le but de ce projet est donc de créer des applicateurs personnalisés qui épouseront les formes des patients, pour minimiser l’air entre l’applicateur et le patient, moins couteux et utilisables dans le traitement du cancer de la peau en curiethérapie. Pour ce faire, plusieurs technologies émergentes seront utilisées comme une imprimante 3D et un scanneur de surface. Le scanneur sera utile pour créer la surface interne de l’applicateur qui correspondra à la forme de la zone à traiter. L’imprimante sera utilisée pour imprimer les applicateurs incluant des tubes où il sera possible d’insérer les cathéters, en PLA ou en NinjaFlex. La densité du matériau à utiliser sera étudiée pour se rapprocher le plus possible de l’eau.
This project will entail development of a caregiver app to accompany the main Opal app that has already been designed and developed by the Health Informatics Group. Opal is a mobile phone app that will allow Radiation Oncology patients to access their electronic health data. Patients may chose to share data with their caregivers and the caregivers can access the data using the caregiver app.
Image quality assurance in MRI can be time-consuming and potentially error prone. This involves the analysis of MR images using specialized software, requiring intervention from a human observer – a trained physicist to perform annual testing, or a technologist to perform weekly testing. As a result, QA can be neglected. My group has developed an open-source package to perform the image-based calculations required for evaluation according to the criteria of the American College of Radiology. Initial results have been promising, but the package needs evaluation and improvement, to fix errors and to generalize the software. A few choices have to be made in the implementation that require fine tuning. Finally, validation against a database of test results by a human observer will be performed to ensure stable, accurate performance .
To Be Added
Currently, the identification and quantification of pulmonary fibrosis, resulting from contemporary treatment modalities in lung radiotherapy, is largely dependent on
physician apraisals and patient reports. As a result, pulmonary fibrosis, and it’s progression, are often poorly identified and, more importantly, poorly quantified. Using the analysis of clinical and diagnostic imaging we will attempt to extract lung image densities by quantifying, in HU, the changes in densities between the beginning of treatment and end of treatment. Then, using physician appraisals for imaged pulmonary fibrosis, we will attempt to correlate changes in densities with changes in reported severity of pulmonary fibrosis. Depending on he robustness of this proposed method, we may ultimately try to correlate density changes with changes in clinical presentation of pulmonary fibrosis as well as ultimately correlating density changes with known biomarkers, relating to pulmonary fibrosis, and cancer metastasis. Ultimately we hope to develop a better method of describing, characterizing and quantifying pulmonary fibrosis .
Calorimeters are independent of beam quality and field size which make them the most absolute method in measuring dose. The clinical use of calorimeters, however, is limited, due to their bulkiness and required technical knowledge. This project involves the development of an innovative graphite probe calorimeter (GPC) for clinical dosimetry. The GPC will be more compact and easier-to-use than previous calorimeters, making it ideal for routine clinical usage. With a fully-functional version already developed, made and tested, the objective is to further validate experimental results with theoretical ones.
To Be Added
To Be Added
To Be Added
To Be Added
To Be Added.
To Be Added.
Combination therapy to treat malignant melanoma model in mice
Ultrasmall gold nanoparticles (~3nm) which were conjugated to doxorubicin, a chemotherapeutic drug, have been previously analyzed by other members of Dr. Nadeau’s team. The ultra-small gold nanoparticles (AuNPs) are able to penetrate into the nucleus. Doxorubicin is conjugated to these small AuNPs, creating a nanoparticle drug dubbed AuDox, via stable amide bonds which prevent doxorubicin from dissociating The increased effectiveness was demonstrated by a 20-fold increase in cytotoxicity of AuDox compared to Dox alone in mouse melanoma cells (B16 cells) and 2-fold increase in human melanoma cells (SK-MEL-28 cells). Previous members of our team have tested these nanoparticles in mice models; it was demonstrated that AuDox successfully arrested tumour growth in mice with induced malignant melanomas.
Targeted radiation therapy will be used in addition to AuDox to induce tumour regression and remission. Due to its radiosensitization properties, AuNPs will absorb the incoming radiation energy and release photoelectrons and auger electrons. These high energy particles are deposited in the surrounding cytoplasm and will enhance the cell killing properties of the radiation. The beneficial aspects of this treatment will be three-fold:
1) The use of ultra-small AuNPs will enable passive targeting of the doxorubicin via the enhanced permeability retention effect (EPR) and allow drug concentration in the nucleus;
2) The conjugation of Dox to the AuNPs via a stable bond will increase the number of Dox delivered at a given drug concentration and will prevent the Dox from dissociating from the AuNPs; and
3) The use of targeted radiation therapy will be enhanced by the radiosensitization effect of AuNPs and will limit the radiation that reaches other parts of the body.
To Be Added
High quality radio-tracer specific atlases can be made using state-of-the-art diffeomorphic registration algorithms. The atlases can be exploited in a number of ways. Firstly, a careful manual segmentation of the atlas into relevant functional regions of interest can be used to enable fully automated segmentation and regional kinetic analysis of dynamic PET images. This prospect has been explored using real and simulated [11C]raclopride data. Secondly, a high quality atlas can be used to improve PET reconstruction by incorporating it as a prior into Bayesian PET reconstruction using an information-theoretic (joint entropy) measure. This latter application will be explored in further detail using a comprehensive simulated data set of [11C] raclopride images.
1. P. Novosad, M. Beith, P. Gravel, H. Lombaert, K. Sieeiqi, A. Reader (2013), Applying a [11C]raclopride template to automated binding potential estimation in HRRT brain PET, Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE (2013): 1-8.
2. Novosad, P. and Reader, A.J. (2016) MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions. Physics in medicine and biology 61(2016): 4624-4645.
Le projet consiste en concevoir un algorithme de reconstruction novateur en tomodensitométrie, une modalité d’imagerie médicale volumétrique.Laproblématique est exposée en détail: le principal besoin est la correspondance la plus juste possible entre le sujet et l’image, alors que la principale contrainte est le temps de reconstruction de l’image. Une solution est proposée en se basant sur une revue de la littérature récente. La reconstruction peut être améliorée par l’utilisation d’un meilleur modèle physique de l’atténuation des rayons X, qui décrit l’évolution du spectre de la radiation et la diffusion. L’évolution du spectre est prise en charge par un étroprojecteur polychromatique, alors que la diffusion est caractérisée par simulation Monte Carlo. Des outils de calcul numériques de fine pointe, dont le matériel graphique, sont sollicités pour implémenter le modèle.
Avec l’augmentation significative de l’utilisation des examens radiologiques en médecine (le nombre de CT Scan au Canada a doublé entre 2003 et 2013), les risques associés à l’exposition à la radiation ionisante, bien que statistiquement faible, ne peuvent être complètement ignorés. Au Québec, le Vérificateur général a jugé dans son rapport de 2015-2016 qu’il serait souhaitable que le Ministère de la Santé et des Services sociaux implémente un système permettant de faire le suivi de la dose cumulative chez les patients en radiologie afin d’évaluer le risque pour la population et réduire l’exposition à la radiation d’origine médicale.
Ce projet a pour but de répondre à ce besoin en fournissant un outil permettant d’extraire et de traiter automatiquement les informations sur les doses reçues par les patients lors d’examens radiologiques contenues dans les Picture Archiving and Communication System (PACS) hospitaliers. Le traitement des données comprendra le calcul de dose précis à partir des paramètres d’acquisition (kVp, courant, pitch) utilisant un algorithme Monte-Carlo maison de calcul de dose sur GPU, GPUMCD, et le traitement d’image avancés, se servant d’un réseau neuronal convolutif et d’un échantillon de CT Scans cliniques, afin d’obtenir la dose reçue par différents organes. Finalement, toutes ces données seront mises à la disposition des cliniciens et des responsables de santé publique concernés dans une base de données .
To Be Added.
The outcome of radiotherapy treatments can be improved by using nanoparticles to radiosensitize the tumor. Gold is commonly offered as a candidate but large amounts are usually necessary. One alternative is to use cerium-doped lanthanum fluoride (LaF3:Ce). These emit UV-visible light when irradiated. If these nanoparticles are conjugated to a photosentitizer, a combined radiation/ photodynamic therapy could be created. The main goals of this project will be first to synthesize, and characterize scintillating nanoparticles, then conjugate them to a photosensitizer such as chlorin e-6 and apply a radiation protocol to a variety of cell lines. The amount of cell death caused by equal concentrations of LaF3:Ce and Au will also be compared. Preliminary results using B16-F10 cells have shown that LaF3:Ce are not cytotoxic. Based on initial Monte Carlo (MC) simulations, there was significant dose enhancement observed with both Au and LaF3:Ce, with the highest achieved using 10 mg Au and a 50 kVp x-ray source. In preliminary radiation experiments, a dose enhancement factor of up to 1.35 was measured for the 160 kVp x-ray and 4 mg/ml LaF3:Ce nanoparticle concentration. Comparing the dose enhancement for 1mg/ml Au and LaF3:Ce showed no significant difference. The next step is to synthesize LaF3:Ce for stable in biological media. After quantifying cellular toxicity, radiation damage due to LaF3:Ce and Au will be compared. Simultaneously, more MC simulations of DNA strand breaks due to nanoparticle in solution will performed to provide a better correlation with experimental results.
1. D.R. Cooper, D. Bekah, J.L. Nadeau, (2014) Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement, Frontiers in Chemistry 2, Article 86, 13 pages October 2014, doi: 10.3389/fchem.2014.00086.
2. Poon, W., Zhang, X., Bekah, D., Teodoro, J.G., Nadeau, J.L. (2015) Targeting B16 tumors in vivo with peptide-conjugated gold nanoparticles, Nanotechnology 26(8): 285101. Epub 2015 Jun 26.
3. Devesh Bekah, Daniel Cooper, Konstantin Kudinov, Colin Hill, Jan Seuntjens, Stephen Bradforth and Jay Nadeau (2016) Synthesis and Characterization of Biologically Stable, Doped LaF3 Nanoparticles Co-Conjugated to PEG and Photosensitizers, Journal of Photochemistry and Photobiology A: Chemistry Volume 329, 1 October 2016, Pages 26–34
As is the case for all human activity, errors occur in medicine. However, in a high-reliability healthcare system, the same error should never occur twice–healthcare personnel should learn from errors and put in place mechanisms to avoid their repetition. To facilitate such learning, it is necessary to gather data regarding incidents and accidents that occur.
At the MUHC, the Division of Radiation Oncology uses an incident reporting software called SaILS (Safety and Incident Learning System) to collect and analyze incidents and near misses. Staff enter incident narratives into SaILS when incidents occur within the department. Once entered, an incident is assigned to an “investigator” who examines what occurred and classifies how and why it occurred according to the taxonomy of the Canadian National System for Incident Reporting–Radiation Treatment.
This project will attempt to use Natural Language Processing to increase the effectiveness of incident reporting to improve patient safety in Radiation Oncology.
For the first period, we will use the clinical Text Analysis and Knowledge Extraction System (cTAKES) to annotate the incident report. We will implement a web interface to show the annotation results in a more friendly way. We will also build a local dictionary to detect medical terms related to the radiation oncology domain. The annotation is a previous step for other NLP tasks. Moreover, the annotation gives us inside the content of the incident report, for example, the number of medical terms by incident report and other statistics .
To Be Added
For this project, we aim to use EPID images for daily monitoring of patient undergoing radiation therapy. We perform a relative analysis on these images totrack possible anatomical changes or other deviation from the planned treatment before they could have a significant impact on the outcome of the treatment. We are focusing our analysis on four anatomical sites: lung, head and neck, breast and prostate. For each site we can establish a set of threshold to trigger various actions from an additional CBCT acquisition to a full treatment replanning.
1) To Be Added
La curiethérapie est une modalité particulière de traitement en radiothérapie. Sa particularité repose dans l’implantation des sources radioactives, soit au contact, soit à l’intérieur du volume cible à traiter, ce qui conduit à une meilleure conformité de la dose au volume cible et une réduction de la dose aux tissus alentours.
Le processus de planification de traitement en curiethérapie haut débit de dose, quelle que soit la méthode d’optimisation implantée dans le système de planification de traitement (TPS), requière une forte interaction entre le planificateur et le TPS. Cette forte dépendance, non seulement, augmente la durée de la planification, mais conduit aussi à un plan final dont la qualité dépend du jugement et de l’expérience du planificateur. L’objectif du présent projet vise à développer un modèle de contrôle qualité qui repose sur les paramètres géométriques spécifiques de chaque patient, grâce à l’analyse de frontière stochastique. L’approche de l’analyse stochastique conduira au développement d’une fonction de production (CTV) et d’une fonction de coût (OAR), dont les arguments seront les paramètres géométriques spécifiques à chaque patient tels que : le volume du CTV (Clinical Target Volume), le volume des organes à risques (OAR), la proximité CTV-OAR, etc.
Les modèles ainsi obtenus assisteront le planificateur dans l’identification d’une réduction potentielle de la dose à un OAR à la fin d’un processus de planification, tout en maintenant les objectifs de couverture du CTV, cela permettra de supprimer la dépendance de la qualité du plan à l’expérience de ce dernier.
To Be Added
Au CHU de Québec, des traitements radio-isotopiques avec L-177-octréotate sont réalisés pour certains patients atteints de tumeurs neuroendocrines. À ce jour, un quantité fixe d’activité est injectée pour chaque patient, sans égard à la captation du produit dans les volumes cibles et les organes à risque. Trois séances d’imagerie par tomographie d’émission
monophotonique (TEM) sont prévues à chaque cycle de traitement afin d’établir cette captation et éventuellement d’ajuster la dose selon les caractéristiques propres à chaque patient.
Version 1/ juin 2013: Le projet consiste à développer une plateforme de planification qui permettra le calcul de la dose associée à chaque cycle de traiement. Celle-ci permettra la
personnalisation des traitements et devrait mener à de meilleurs effets thérapeutiques tout en limitant les toxicités associées.
1. To be added.
The introduction of three dimensional (3D) imaging modalities into brachytherapy (BT) has facilitated the transition from 2D BT to 3D image-guided brachytherapy (IGBT). Namely, computed tomography (CT), magnetic resonance imaging (MRI) and ultrasonography (US) provided 3D anatomical image datasets enabling more accurate patient-specific delineation of target volumes and organs-at-risk, and dosimetric evaluation based on dose-volume relationships instead of point doses. This in turn allowed dose escalation to tumor volumes resulting in better clinical outcomes. Specific quality assurance (QA) procedures are well defined for the use of different anatomical imaging modalities (CT, MRI, US) in external beam radiotherapy (EBRT). Protocols and QA guidelines also exist for different kinds of BT treatments. However, the introduction of image-guidance into BT process should be associated with an update to current QA protocols taking into account different uncertainties that would affect clinical outcomes. Advanced QA methodologies that address this issue are required for the use of different machines (imaging and BT) at different phases of the treatment process. Favorably, radiochromic film (RCF) dosimetry offers a 2D high resolution solution that can be applied at different stages in the BT process. An RCF dosimetry system for BT was developed by our group and based on it, new methodologies will be investigated for clinical implementation .
1. Saad Aldelaijan†, Shada Wadi-Ramahi, Ahmad Nobah, Belal Moftah, Slobodan Devic, Noha Jastaniyah, (2017) Commissioning of applicator-guided stereotactic body radiation therapy boost with high-dose-rate brachytherapy for advanced cervical cancer using radiochromic film dosimetry , Brachytherapy 16(4), 893-902 (2017). doi: 10.1016/j.brachy.2017.03.009.
2. Saad Aldelaijan†, Hamed Bekerat, Ivan Buzurovic, Philip Devlin, Francois DeBlois, Jan Seuntjens, Slobodan Devic, (2017) Dose comparison between TG-43–based calculations and radiochromic film measurements of the Freiburg flap applicator used for high-dose-rate brachytherapy treatments of skin lesions, Brachytherapy 16(5): 1065-1072. DOI: http://dx.doi.org/10.1016/j.brachy.2017.06.011.
3. Li Heng Liang, Nada Tomic, Te Vuong, Saad Aldelaijan, Hamed Bekerat, Francois DeBlois, Jan Seuntjens, Slobodan Devic (2017) Physics aspects of the Papillon technique – five decades later, Brachytherapy. 2017 Nov 1. pii: S1538-4721(17)30474-9. doi: 10.1016/j.brachy.2017.09.016. [Epub ahead of print].
4. Aldelaijan A†, Tomic N, Papaconstadopoulos P, Schneider J, Seuntjens J, Shih J, Lewis D, Devic S (2017) Technical Note: Response time evolution of XR-QA2 GafChromicTM film models, Med Phys. 45(1):488-492, January 2018. doi: 10.1002/mp. 12689 0094-2405/2018/45(1)/488/5 . PMID: 29164628.
5. Aldelaijan S, Alzorkany F, Moftah B, Buzurovic I, Seuntjens J, Tomic N, Devic S. (2016) Use of a control film piece in radiochromic film dosimetry, Phys. Med. 32(1): 202-207; January, 2016.
6. Slobodan Devic, Huriyyah Mohammed, Nada Tomic, Saad Aldelaijan, Francois De Blois, Jan Seuntjens, Shirley Lehnert, and Sergio Faria (2016) FDG-PET-based differential uptake volume histograms: a possible approach towards definition of biological target volumes, Br J Radiol 89: 20150388, March 2016
Radiation therapy is an important tool used in cancer treatment, with the goal being to deliver a sufficient amount of ionizing radiation dose to eradicate the tumor while minimizing the dose imparted to healthy tissue. Due to changes in tumor characteristics over the course of treatment, it is important to monitor tumor shape and properties to ensure optimal treatment effectiveness and safety. The use of image guided technology would be invaluable in providing real time information regarding the dose distribution and corresponding anatomy, however such a system is not presently available. The goal of this project is to investigate the use of x-ray acoustic computed tomography (XACT) for this purpose. XACT images the dose distribution following a pulse of irradiation by detecting radiation-induced acoustic waves. The first goal of the present work is to build upon the existing XACT simulation workflow developed at McGill to improve its accuracy, and properly validate it with experimental measurements. The second objective is to develop an experimental XACT-ultrasound system capable of concurrently imaging both the dose distribution and anatomy. Thirdly, phantoms representing different cancer sites, such as the prostate and breast, will be used to test the experimental system. Comparisons to simulations will be made. Finally, this system will be tested on animals.
1. Susannah Hickling†,, Hao Lei, Maritza Hobson, Pierre Leger, Xueding Wang, Issam El Naqa (2017) Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications, Med Phys.;44(2):608-617. doi: 10.1002/mp.12039. Epub 2017 Feb.
2. Hickling S, Leger P, El Naqa I (2016) On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator, IEEE Trans Ultrason Ferroelectr Freq Control. 63 (5): 683 – 691.
Positron emission tomography (PET) is a diagnostic functional imaging technique in which beta particle-emitting radioactive tracers, that are injected into the patient, are monitored to quantify physiological, biochemical, and pharmacological functions at cellular and molecular levels. PET is ideally suited to monitor cell and molecular events early in a disease such as cancer and during pharmacological or radiation therapy. The measurement of radioactive tracer concentration in blood plasma, known as the input function (IF), is required to accurately model kinetic parameters for PET. However, the IF is usually derived from multiple blood samples drawn from an arterial cannula. The IF is therefore acquired by invasively withdrawing arterial blood, which can cause significant discomfort to the patient and complications.
Furthermore, present methods are resource demanding because specialized equipment and trained staff are needed to properly perform arterial cannulation (e.g., for anaesthetics) to withdraw and assay the plasma samples. This project aims at developing a technology that acquires the IF non-invasively in real time during PET. The system will be user friendly and cost effective, and will therefore be practical to incorporate in the clinical workflow. The non-invasive system will eliminate the patient discomfort and potential hazards that are associated with present methods to acquire the IF. Several applications are underused because arterial cannulation is required. Some examples include cerebral blood flow assessment, tumor perfusion studies and absolute glucose metabolism quantification.
1. To Be Added
Preparation of a study for Germany: 65 patients was prepared for a study on head and neck tutor: CT\’s, PET and personal informations were gathered for each patient which had a modified plan and GTV for a radiotherapy treatment. An anonymization program was created on the base of a pre existing script applied to the Dicom file of the patients .
To Be Added
The more recent TG-186 model-based formalism has been suggested on many occasions as an important improvement from the water-based TG-43 formalism for low-energy brachytherapy. To reproduce patient-specific geometries, tissue elemental compositions are taken into account. The current project will serve to investigate the effect of uncertainty in elemental composition on low-energy brachytherapy when applying the TG-186 approach. These uncertainties will be assessed through tongue cancer patient studies.
1. Dylan Mann-Krzisnik†, Frank Verhaegen, Shirin A. Enger (2018) The influence of tissue composition uncertainty on dose distributions in brachytherapy, Journal of the European Society of Radiotherapy and Oncology 126(3):394-410. Published online February 7, 2018, DOI: https://doi.org/10.1016/j.radonc.2018.01.007 . pii: S0167-8140(18)30024-0.
Quantification of physical uncertainties in calculating the position of the Bragg peak is essential to the safe and effective use of proton therapy. To achieve our research objectives of establishing clinical methods to reduce range uncertainty for proton therapy, we propose two complementary methods of range verification: (1) polymer gel dosimeters analyzed with both optical computed tomography (OCT) and magnetic resonance imaging (MRI) to evaluate the three-dimensional dose distribution of a therapeutic proton delivery prior to treatment, and (2) in vivo point detector measurements to perform adaptive beam energy adjustments for pediatric patients receiving passively scattered proton craniospainal irradiation.
Experimental Approach: Particle simulation studies using the Tool for Particle Simulation (TOPAS)
platform will optimize positioning of the point detector in the patient, establish minimum requisite dose for positional accuracy, and quantify range-mixing uncertainty. A fabrication protocol for the polymer gels will be established and validated in photon and electron beams at our institution. A T2 sequencing protocol for a 3.0 T MRI scanner to image the gels will be optimized by working with our institution’s MR physicist and the Philips as well as an OCT scanning protocol as part of a research agreement with the Modus Medical Devices.
Impact: The point detector array system performs a final range verification measurement, allowing for an adaptive adjustment of the beam energy. For sites where an intracavitary measurement is
impractical, a polymer gel dosimetry protocol could provide three-dimensional range verification for patient-specific quality assurance.
1. A. Toltz, Hoesl M, Schuemann J, Seuntjens J, Lu HM, Paganetti H (2017) Time-resolved diode dosimetry calibration through Monte Carlo modeling for in vivo passive scattered proton therapy range verification, J Appl Clin Med Phys. 2017 Nov;18(6):200-205.. doi: 10.1002/acm2.12210. [Epub ahead of print].
Radiation threapy requires balancing tumour control and normal tissue toxicity, in order to ensure optimal outcomes. This, however, can be a challenging task when assessing a plan during the treatment planning process. Plan evaluation metrics and dose constraints are established by various protocols, but their implementation in the clinical routine can be overwhelming and time-consuming. In addition, with the advent of novel, more complex treatment techniques for external beam radiotherapy that offer more conformal dose distributions and sharp dose gradients, it is even more so important to have a high level of confidence in the plan accuracy. With these techniques being increasingly used in the clinic, there is a need for treatment planning assessment tools to alleviate the workload of physicists and dosimetrists. In addition, retrospectively evaluating different plan parameters is also important in analyzing treatment outcomes, which facilitate studies that often become the basis of treatment planning constraints and guidelines. The purpose of this project can be stated in two different but complementary parts. Firstly, the goal is to develop a user-friendly software tool for dosimetrists that aims to facilitate plan evaluation during the treatment planning process, and the second is to create a framework for retrospective batch analysis of treatment plans that can quickly provide plan parameters of past plans. The Eclipse Scripting API (ESAPI) a scipting tool designed specifically for it’s use, will be used for convenient integration into the treatment planning workflow .
To Be Added
1. Collins-Fekete C-A, Plamondon M, Martin A-G, Vigneault É, Verhaegen F, Beaulieu L. (2014) Quantifying the effect of seed orientation in postplanning dosimetry of low-dose-rate prostate brachytherapy, Med. Phys. 41, 101704.
2. Collins-Fekete C-A, Plamondon M, Martin A-G, Vigneault É, Verhaegen F, Beaulieu L. (2015) Calcifications in low-dose rate prostate seed brachytherapy treatment: post-planning dosimetry and predictive factors, Radiotherapy Oncology. 114(3):339-44.
3. Collins-Fekete C-A, Dias M.F., Doolan P., Beaulieu L., Seco J. (2015) Developing a phenomenological model of the proton trajectory within a heterogeneous medium required for proton imaging, Physics in Medicine and Biology 60(13): 5071-5082.
4. Charles-Antoine Collins-Fekete, Sébastien Brousmiche, Stephen K N Portillo, Luc Beaulieu and Joao Seco (2016) A maximum likelihood method for high resolution proton radiography/proton CT, Physics in Medicine and Biology 61(23) November 3, 2016.
La reconstruction itérative en tomodensitométrie pose des défis importants tant en ce qui a trait à la modélisation physique du système à l’étude qu’à l’implémentation algorithmique. Ce projet d’intéresse aux deux aspects (modélisation et implémentation) dans le cadre de l’imagerie tomodensitométrique en faisceau conique. L’objectif est d’obtenir des images plus justes en considérant l’effet du rayonnement diffusé. La plateforme OpenRTK sera utilisée pour le développement et un engin Monte Carlo pourra aussi être greffé au modèle pour tenir compte du rayonnement diffusé. Cet engin sera basé sur GPUMCD, un code développé au labo.
À terme, ce projet permettra d’obtenir des valeurs plus justes en tomodensitométrie en faisceau conique.
In brachytherapy, the dose gradients are much more significant than in external beam in general and the competition between Compton scattering and the photoelectric effect, in particular for low energy brachytherapy, adds to the complexity of performing experimental measurements. In fact, the accuracy of source strength measurements by standard laboratories is less than for EBRT and the establishment of a primary standard of dose to water, while in the works, has proven a difficult task to accomplish. It is therefore quite a daunting task to ask every clinical physicist, especially in small centers, to perform experimental validation of new algorithms.
The project aims to develop numerical phantoms and build physical phantoms from the most interesting numerical ones to enable advanced quality control and quality assurance of new algorithms and delivery techniques for brachytherapy users.
This project is performed within the framework of Prof. Beaulieu industrial research chair .
1) To Be Added .
To be added.
1. To Be Added.
To be added.
1. To Be Added.
To be added.
1. To Be Added.
To be added.
1. To Be Added.
To be added.
1. To Be Added.
To be added.
1. To Be Added.
RT @DrShirinAEnger: Congratulations Youstina Daoud on your publication. Youstina developed a graphical user interface which combined with…Tue May 30 12:38:44 +0000 2023
Big congratulations to @McGillMedPhys faculty, Dr. @johnkildea for been granted tenure @mcgillu. This remarkable ac… t.co/ldTcwISS0TSun May 28 15:57:53 +0000 2023
RT @CAMERAAfrica: 🙏🙏@mcgillu, @McGillGradStudy, @McGillMedPhys, & @McGillMed @TheNeuro_MNI who came together to fund & back this #opens…Sat May 27 19:17:41 +0000 2023
Thank you @CAMERAAfrica for this opportunity to collaborate and peer train our students.Sat May 27 18:25:55 +0000 2023
Thanks to @mcgillu & @McGillGradStudy for the funding and enabling our students to forge collaborations & actively… t.co/75MeFeJQKISat May 27 16:41:45 +0000 2023
Congratulations to @McGillMedPhys faculty @johnkildea for being selected on the 2023 Faculty Honour List for Educat… t.co/cIkjH668xgThu May 25 11:57:40 +0000 2023
#ESTRO23 in Vienna was focused on radiotherapy innovation. @McGillMedPhys faculty and graduate students presented t… t.co/bVOk9GWylbMon May 22 22:26:51 +0000 2023
@McGillMedPhys faculty, current students, and alumni reconnect at #ESTRO23 in Vienna. Thank you all for joining t.co/4Nm6RHsu6rFri May 12 23:24:01 +0000 2023
Congratulations @fberumenm 🎊, winner of the #curietherapies2023 young investigator award for his work on uncertaint… t.co/8wLGNCcYHwSat Apr 22 19:21:06 +0000 2023
McGill Medical Physics wishes all our students, faculty, alumni, and everyone else that celebrates a Happy Eid! t.co/I1EU9vIOYOFri Apr 21 15:03:47 +0000 2023
Don’t miss this week’s Friday Noon Seminar where we’ll be joined by Ruth Wilkins who will speak about “Biodosimetry… t.co/rn2BZiYxSWThu Apr 20 14:53:51 +0000 2023
This week’s Friday Noon Seminar will be given by Avery Berman, PhD on the topic of "Imaging Brain Function with Imp… t.co/LNPv9wALgtThu Apr 13 20:57:12 +0000 2023
RT @hacks_med: It is a pleasure to support and collaborate with @CAMERAAfrica 2023 SPARK Academy from all of us at McMedHacks @hacks_med @E…Sat Apr 08 22:45:11 +0000 2023
RT @EngerLab: Well done @yujingzou, Juan Duran, Parsa Bagherzadeh, Hossein Jafarzadeh, Sébastien Quetin and Laya Rafiee that will be mentor…Sat Apr 08 22:44:53 +0000 2023
RT @DrShirinAEnger: It is a great pleasure and heart warming experience to see graduate students and postdoctoral fellows in my lab spend t…Sat Apr 08 22:44:35 +0000 2023
RT @McGillMedPhys: This week’s Friday Noon Seminar will be given by Monique Mayer on the topic of "Comparative Oncology: How Veterinary Rad…Fri Mar 31 01:12:35 +0000 2023
This week’s Friday Noon Seminar will be given by Monique Mayer on the topic of "Comparative Oncology: How Veterinar… t.co/mInCiOioG5Thu Mar 30 20:03:12 +0000 2023
Please join us in Montreal for the International Congress on Radiation Research: #ICRR2023. Abstract deadline is ap… t.co/VrP0MV0ElQThu Mar 23 17:44:46 +0000 2023
@McGillMedPhys wish a Happy and Healthy Nowroz/Nevruz to all who celebrate it. t.co/iPCNUS6OufMon Mar 20 12:40:36 +0000 2023
Well done @marianneaznar and Happy International Women's day. Marianne is one of many incredible @McGillMedPhys alu… t.co/VdSdPWy20GWed Mar 08 21:12:06 +0000 2023