Iterative Reconstruction in Transmission Computed Tomography: Innovations and Potential Applications

Dmitri Matenine\(^1\), Julia Mascolo-Fortin\(^1\), Yves Goussard\(^2\) and Philippe Després\(^{1,3}\)

\(^1\)Département de physique, de génie physique et d'optique, Université Laval

\(^2\)Département de génie électrique / Institut de génie biomédical, École Polytechnique de Montréal

\(^3\)Département de radio-oncologie, CHU de Québec
Introduction

• Transmission Computed Tomography (CT)
• Fully 3D imaging modality
• Acquisition of hundreds projection images via partial attenuation of “some form of radiation”: X-rays, visible light
Introduction

• **X-ray CT:**
 • diagnostic radiology, EBRT treatment planning
 • on-board cone-beam CT (spatial conformity, IGRT)
• **Optical CT:** reading of radiosensitive gels for RT quality assurance (QA)
Bits of history

• **1917**: Radon transform formulated (theoretic work)
• **1971**: EMI scanner by Godfrey Hounsfield, iterative reconstruction on 80×80 image matrix

rsna.org

http://theinstitute.ieee.org

impactscan.org
Bits of history

• 1984:
 • Feldkamp-Davis-Kress (FDK) analytic algorithm for cone-beam CT
 • ML-EM iterative algorithm

• 2000-2005:
 • CBCT prototypes for linacs
 • rudimentary GPU codes for FDK and IR
 • more IR algorithms

• 2010 … :
 • CUDA API
 • wave of implementations
Motivation (why all the trouble?)

- FDK and the likes:
 - “good” images using considerable radiation doses and “nice” projections’ sets
 - quality quickly degrades in bad conditions

- IR
 - minor improvement of image quality for standard acquisitions
 - quantum leap: makes unusable projections’ sets usable
 - opens door to low-dose imaging and non-standard acquisitions
General concepts
Geometry modelling

- Image most often voxelized
- X-rays / visible light crossing the FOV
 - thin ray model (simple),
 - multi-ray (complex), most promising
 - thick ray model (even more complex).

Beister, Kolditz and Kalender, 2012

Fessler (AAPM course, 2011)
Physics modelling

- Beer-Lambert attenuation law, monochromatic

\[I = I_0 \exp \left(-\sum_l l_j \mu_j \right) \]

- Interactions’ cross sections, polychromaticity

\[\mu = \mu_C + \mu_{PE} \]

- Scattered radiation, Monte-Carlo simulations
Suppose detector reading a random variable e.g.:
- Normally distributed (many photons) OR
- Poisson-distributed (few photons)

Let the unknown μ parametrize the distribution

Select an estimator to find the parameter set (the 3D image !) e.g.:
- least squares
- maximum likelihood
Suppose detector reading a **random variable** e.g.:
- Normally distributed (many photons) OR
- Poisson-distributed (few photons)

Let the unknown μ parametrize the distribution

Select an **estimator** to find the parameter set (the 3D image !) e.g.:
- least squares
- maximum likelihood

Some giant objective or “cost” function $F(\mu, I)$
Regularization term

- Noise or inconsistencies are expected…
- How to rectify a “bad voxel”?
- Look at the neighbors!
- A local penalization term is added to F
- Many edge-preserving regularization criteria available

E.g.: total variation minimization: suppose the image is composed of a majority of uniform regions
Solution

- Optimize the objective function F
- Plenty of methods from the **optimization** field e.g.:
 - steepest descent method (slow convergence)
 - incremental gradient descent (bias)
Implementation

- Iterative \equiv sequential
 - 1 iteration is parallelizable
- Cost function depends on all voxel values
 - (cannot reconstruct small regions in parallel)
- Memory-intensive problem: sums up to compute a dot product and write the result to random memory locations.
Iterative reconstruction in X-ray CT
Disclaimer:
not an exhaustive review of IR
Dose reduction

- Regularized model-based IR robust to reduction of the number of projections
- Typical multislice scan: 1000-1200 projections
- CBCT: ~700 projections
- Jia et al., J. of XRay Sci and Tech, 2011
- Debatin et al., Fully3D Proceedings, 2013

Jia et al.

FDK
Dose reduction

- Matenine et al., Med Phys, 2015
- OSC-TV
 - ordered subsets convex (Kampuis and Beekman, 1998)
 - with TV regularization (Sidky et al., 2006)
 - with gradual subset number reduction
- rapid convergence + bias reduction at the end

- select a subset of projections
- simulate a number of direct projections through image estimate
- compute and apply image correction terms
Dose reduction

- Synthetic XCAT head phantom

slice size at reconstruction: 384\times384
z-range: 126 slices
Dose reduction

- Varian OBI Pelvis scan (half-fan)
 - bony structures well-defined
 - ring artifacts – “half-fan’s fault”
- OSC-TV beats POCS-TV (Sidky et al., 2006)
- less sensitive to free parameter variations

slice size at reconstruction: 416×416
z-range: 16 slices
Trends

• 4D-CBCT Iterative Reconstruction with deformable image registration e.g., Yan et al. Med Phys, 41(7), 2014
 • Deforming planning CT projections to match the CBCT and obtain quality phase images

* * * *

• Task-based dose optimization for model-based IR algorithms e.g., Li et al., Med Phys, 42(9), 2015)
 • Optimize kVp and mAs settings for specific lesion detection, based on local CNR
Survey!
HPC computing

- OSC-TV tested using the NVIDIA® Titan
 - 2688 cores
 - 1020 MHz max. clock
 - 288 GiB/s theoretical memory bandwidth
 - 32-bit floating point used
- OSC-TV recon times in the 1-3 min. range for limited volume coverage (15-100 slices)
- Pre-computed system matrix, data compression using geometric symmetries
- Current work: real-time raytracing
 - large cone opening
 - irregular angles during acquisition
HPC computing

• Memory-intensive problem poorly suited for distributed systems (MPI)
• Cloud computing (Amazon EC2), recon in 5 min for $10, see Rosen et al., Fully3D 2013
• Multi-GPU approaches
 • GPU cluster e.g., Guillimin/Helios
 • local machine
HPC computing

- Reconstruction toolkit (RTK) library based on the Insight Segmentation and Registration Toolkit (ITK).
 - http://www.openrtk.org/
- C++ library
- CMake cross-platform compilation
- CUDA support out of the box
- FDK, ART, SART implemented

Rit et al., J. of Physics: Conf Ser, 2014
IR in optical cone-beam CT
Optical CT

- Optical computed tomography (optical CT) is
 3D estimation of the attenuation of visible light in semi-transparent samples, very similar to X-ray CT

it is not

optical coherence tomography (OCT)
Optical CT

• Optical computed tomography (optical CT) is 3D estimation of the attenuation of visible light in semi-transparent samples, very similar to X-ray CT

 it is not optical coherence tomography (OCT)
 it is not diffuse optical imaging (DOI)
Optical CT

- Optical CT, primarily used in **gel dosimetry**\(^1\) for external beam radiation therapy

- Also, as an educational tool to emulate X-ray CT

\(^1\)Schreiner, “Where Does Gel Dosimetry Fit in the Clinic?”, 29 JPCS, 2009
Motivation

- Optical CT acquisitions most often reconstructed via filtered backprojection, no dose limits.
- Optical CT poses a set of **specific challenges**
 - physics
 - scanner designs
- IR methods tested on synthetic 2D optical CT data\(^2,3\), desirable to test on 3D real data

\(^3\)Doran and Yatigammana, “Eliminating the Need for Refractive Index Matching in Optical CT Scanners for Radiotherapy Dosimetry: I. Concept and Simulations”, PMB, 2012
DeskCAT scanner

- Educational tool for radiology, medical physics

63 cm
Cone beam optical CT

• Challenges related to physics
 • refraction at optical interfaces
 • scatter in colloids like gelatin
 • n variations due to convection currents

• Challenges of the setup
 • opaque zones in the sample
 • moving debris
Phantoms, acquisitions

- Containers: plastic jars of 7.2 cm diameter
- Edge phantom: “transparent” + attenuating silicone
- Line pairs phantom, laser-printed on plastic
- Uniform phantom: water + food dye

- Scan:
 - 400 projections
 - 540×120 pixels
Results
Edge phantom reconstruction

320×320×64, [0, 0.5] cm⁻¹
Spatial resolution & noise

Edge profiles – FDK

Normalized μ (dimensionless)

Displacement from centre of line profile (mm)

- raw line profile
- curve fit

Normalized μ (dimensionless)
Spatial resolution & noise
Spatial resolution & noise

MTF estimated from curve fits

Note: OSC-TV yields 6 – 8 times lower noise σ than FDK
Opaque line phantom recon.

FDK

OSC-TV

[-3, 5] cm⁻¹
Opaque line phantom recon.

[Graph showing halo artifact profiles for FDK and OSC-TV algorithms with position in mm on the x-axis and normalized \(\mu \) (dimensionless) on the y-axis.]
Uniform phantom reconstruction

FDK

OSC-TV
Uniform phantom reconstruction
Uniform phantom reconstruction

Measured spectra

Normalized LED intensity W_e

Wavelength (nm)

LED intensity

Dye solution μ

(dimensionless)

μ (cm$^{-1}$)
Uniform phantom reconstruction

Light beam spectra in uniform phantom (10 ml added dye)

causes bias in μ: 14-24%
c.f. gold standard
Conclusion

• OSC-TV offers:
 • Streaking artifact reduction (few-view)
 • Improved spatial resolution
 • Noise reduction
 • Halo artifact reduction (small opaque objects)

• Further work
 • Acceleration of the GPU code
 • Envisioned integration into the RTK library
 • 4D reconstruction
 • MC Scatter subtraction
Acknowledgements

- John Miller and Jen Dietrich, Modus Medical
- Marie-Ève Delage and Patricia Drouin, U. Laval

The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)
Appendix

• OSC-TV

Representative subset number reduction patterns for OSC-TV.